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Brief solutions

1. We have

f(x) =
1
2
(x1 + 1)2 +

1
2
(x2 + 2)2, g(x) = 3(x1 + x2 − 2)2 + (x1 − x2)2 − 6,

∇f(x) =

(
x1 + 1
x2 + 2

)
, ∇g(x) =

(
8x1 + 4x2 − 12
4x1 + 8x2 − 12

)
,

∇2f(x) =

(
1 0
0 1

)
, ∇2g(x) =

(
8 4
4 8

)
.

(a) Insertion of numerical values in the expressions above gives the first QP-problem
according to

min 1
2p2

1 + 1
2p2

2 + p1 + 2p2

d̊a −12p1 − 12p2 = −6.

This is a convex QP-problem with a globally optimal solution given by

p1 + 12λ = −1,

p2 + 12λ = −2,

−12p1 − 12p2 = −6.

The solution is given by p1 = 3/4, p2 = −1/4 and λ = −7/48, which agree with
the printout from the SQP-solver.

(b) We can see that ∇2f(x) and ∇2g(x) are positive definite, independently of x.
Moreover λ is non-positive in all iterations. This implies that the solution to
each QP subproblem is optimal also for the case when the equality constraint
is changed to a less than or equal constraint. Hence, the iterates would not
change at all if the constraint was changed as suggested.

(c) The inequality-constrained problem is a convex problem, and in addition a
relaxation of the original problem. Hence we get convergence towards a global
minimizer of this problem, which is also a global minimizer of (NLP ).

2. (a) The problem (QP ) is a convex quadratic program. The primal part of the
trajectory is obtained as minimizer to the barrier-transformed problem

(Pµ) min 1
2x2

1 + 1
2x2

2 − µ ln(x1 + x2)

1

Page 2 of 4 Solutions to final exam June 5 2008 SF2822

under the implicit condition that x1 + x2 > 0. The first-order optimality con-
ditions of (Pµ) gives

x1(µ)− µ

x1(µ) + x2(µ)
= 0,

x2(µ)− µ

x1(µ) + x2(µ)
= 0.

These equations are symmetric in x1(µ) and x2(µ). Hence, x1(µ) = x2(µ).
This mean that 2x1(µ)2 − µ = 0, from which it follows that x1(µ)2 = µ/2. If
one includes x1(µ) = x2(µ) in the implicit constraint, it follows that x1(µ) =
x2(µ) =

√
µ/2. Since (Pµ) is a convex problem, this is a global minimizer.

The dual part of the trajectory, i.e. λ(µ), is normally given by λi(µ) = µ/gi(x(µ)),
i = 1, . . . ,m. Here we only have one constraint, so

λ(µ) =
µ√

µ
2 +

√
µ
2

=
√

µ

2
.

(b) As µ → 0 it follows that x(µ) → (0 0)T and λ(µ) → 0. Let x∗ = (0 0)T and
λ∗ = 0. Then x∗ and λ∗ satisfy the first-order optimality conditions of (QP ).
Since (QP ) is a convex problem, this is sufficient for global optimality of (QP ).

(c) We have ‖x(µ) − x∗‖2 =
√

µ. The square root comes from the fact that we
do not have strict complementarity at the solution, i.e., the constraint is active
with a zero multiplier.
If the constraint was given by x1 + x2 ≥ a, for a given a, we obtain

x1(µ) = x2(µ) =
a

4
+

√
a2

16
+

µ

2
.

Hence, for a 6= 0, we obtain ‖x(µ)− x∗‖2 = O(µ). It is only for the degenerate
case, a = 0, we obtain ‖x(µ)− x∗‖2 = O(

√
µ).

3. (See the course material.)

4. (a) The objective function is f(x) = ex1 + x1x2 + x2
2 − 2x2x3 + x2

3. Differentiation
gives

∇f(x) =


ex1 + x2

x1 + 2x2 − 2x3

−2x2 + 2x3

 , ∇2f(x) =


ex1 1 0
1 2 −2
0 −2 2

 .

In particular, ∇f(x̃) = (1 –2 2)T . With g1(x) = −x2
1 − x2

2 − x2
3 + 5 we get

g1(x̃) = 4, which mean that constraint 1 is not active in x̃. The first-order of
necessary optimality conditions require the existence of a λ̃2 such that ∇f(x̃) =
aλ̃2 and aTx̃ + 2 = 0.
The condition ∇f(x̃) = aλ̃2 can not be fulfilled with λ̃2 = 0. Hence, λ̃2 6= 0,
and we obtain

a =
1
λ̃2

∇f(x̃) =
1
λ̃2

(
1 −2 2

)T
.
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The condition aTx̃ + 2 = 0 gives λ̃2 = −1. Hence, a = (−1 2 −2)T .
If a = (−1 2 −2)T , then x̃ fulfils the first order of necessary optimality condi-
tions together with λ̃ = (0 − 1)T .

(b) As we only have one active linear constraint in x̃ we obtain

∇2
xxL(x̃, λ̃) = ∇2f(x̃) =


1 1 0
1 2 −2
0 −2 2

 .

We also have that AA(x̃) = aT , where we can let aT = (B N) for B = −1 and
N = (2 − 2). We then obtain a matrix whose columns form a basis for the
null space of AA(x̃) as

ZA(x̃) =

(
−B−1N

I

)
=


2 −2
1 0
0 1

 ,

which gives

ZA(x̃)T∇2f(x̃)ZA(x̃) =

(
10 −8
−8 6

)
.

But ZA(x̃)T∇2f(x̃)ZA(x̃) 6� 0 since ZA(x̃)T∇2f(x̃)ZA(x̃) is a 2× 2-matrix with
negative determinant. Hence, x̃ does not fulfil the second-order necessary opti-
mality conditions and is therefore not a local minimizer.

5. (a) The relaxed problem is a non-convex quadratic programming problem. To ob-
tain a lower bound of the original problem we do need to calculate a global
minimizer of this non-convex relaxed problem, which in general is not compu-
tationally tractable.

(b) If we let (SDP ′) be the problem arising as the constraint Y = xxT is added to
(SDP ) we can replace Y with xxT , which by (i) gives

(SDP ′)

min cTx + 1
2xTHx

d̊a

(
xxT x

xT 1

)
�
(

0 0
0 0

)
,

x2
j = xj , j = 1, . . . , n.

By hint (ii) we can see that the constraint(
xxT x

xT 1

)
�
(

0 0
0 0

)
is always fulfilled, hence (SDP ′) may be written as

(SDP ′)
min cTx + 1

2xTHx

x2
j = xj , j = 1, . . . , n.

But x2
j = xj if and only if xj ∈ {0, 1}. Hence, (SDP ′) and (P ) are equivalent.


