SF2822 Applied nonlinear optimization, final exam

1. We have

$$
\begin{aligned}
f(x) & =\frac{1}{2}\left(x_{1}+1\right)^{2}+\frac{1}{2}\left(x_{2}+2\right)^{2}, & g(x) & =3\left(x_{1}+x_{2}-2\right)^{2}+\left(x_{1}-x_{2}\right)^{2}-6, \\
\nabla f(x) & =\binom{x_{1}+1}{x_{2}+2}, & \nabla g(x) & =\binom{8 x_{1}+4 x_{2}-12}{4 x_{1}+8 x_{2}-12}, \\
\nabla^{2} f(x) & =\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), & \nabla^{2} g(x) & =\left(\begin{array}{ll}
8 & 4 \\
4 & 8
\end{array}\right) .
\end{aligned}
$$

(a) Insertion of numerical values in the expressions above gives the first QP-problem according to

$$
\begin{array}{ll}
\min & \frac{1}{2} p_{1}^{2}+\frac{1}{2} p_{2}^{2}+p_{1}+2 p_{2} \\
\text { då } & -12 p_{1}-12 p_{2}=-6 .
\end{array}
$$

This is a convex QP-problem with a globally optimal solution given by

$$
\begin{aligned}
& p_{1}+12 \lambda=-1, \\
& p_{2}+12 \lambda=-2,
\end{aligned}
$$

$$
-12 p_{1}-12 p_{2}=-6
$$

The solution is given by $p_{1}=3 / 4, p_{2}=-1 / 4$ and $\lambda=-7 / 48$, which agree with the printout from the SQP-solver
b) We can see that $\nabla^{2} f(x)$ and $\nabla^{2} g(x)$ are positive definite, independently of x Moreover λ is non-positive in all iterations. This implies that the solution to Moreover λ is non-positive in all iterations. This implies that the solution to
each QP subproblem is optimal also for the case when the equality constraint is changed to a less than or equal constraint. Hence, the iterates would not change at all if the constraint was changed as suggested
(c) The inequality-constrained problem is a convex problem, and in addition a relaxation of the original problem. Hence we get convergence towards a global minimizer of this problem, which is also a global minimizer of ($N L P$)
2. (a) The problem $(Q P)$ is a convex quadratic program. The primal part of th trajectory is obtained as minimizer to the barrier-transformed problem
$\left(P_{\mu}\right) \quad \min \quad \frac{1}{2} x_{1}^{2}+\frac{1}{2} x_{2}^{2}-\mu \ln \left(x_{1}+x_{2}\right)$
under the implicit condition that $x_{1}+x_{2}>0$. The first-order optimality con ditions of $\left(P_{\mu}\right)$ gives

$$
\begin{aligned}
& x_{1}(\mu)-\frac{\mu}{x_{1}(\mu)+x_{2}(\mu)}=0, \\
& x_{2}(\mu)-\frac{\mu}{x_{1}(\mu)+x_{2}(\mu)}=0 .
\end{aligned}
$$

These equations are symmetric in $x_{1}(\mu)$ and $x_{2}(\mu)$. Hence, $x_{1}(\mu)=x_{2}(\mu)$ This mean that $2 x_{1}(\mu)^{2}-\mu=0$, from which it follows that $x_{1}(\mu)^{2}=\mu / 2$. I one includes $x_{1}(\mu)=x_{2}(\mu)$ in the implicit constraint, it follows that $x_{1}(\mu)=$ $x_{2}(\mu)=\sqrt{\mu / 2}$. Since $\left(P_{\mu}\right)$ is a convex problem, this is a global minimizer.
The dual part of the trajectory, i.e. $\lambda(\mu)$, is normally given by $\lambda_{i}(\mu)=\mu / g_{i}(x(\mu))$, $i=1, \ldots, m$. Here we only have one constraint, so

$$
\lambda(\mu)=\frac{\mu}{\sqrt{\frac{\mu}{2}}+\sqrt{\frac{\mu}{2}}}=\sqrt{\frac{\mu}{2}} .
$$

(b) As $\mu \rightarrow 0$ it follows that $x(\mu) \rightarrow(00)^{T}$ and $\lambda(\mu) \rightarrow 0$. Let $x^{*}=\left(\begin{array}{ll}0 & 0\end{array}\right)^{T}$ and $\lambda^{*}=0$. Then x^{*} and λ^{*} satisfy the first-order optimality conditions of $(Q P)$ Since $(Q P)$ is a convex problem, this is sufficient for global optimality of $(Q P)$.
(c) We have $\left\|x(\mu)-x^{*}\right\|_{2}=\sqrt{\mu}$. The square root comes from the fact that we do not have strict complementarity at the solution, i.e., the constraint is active with a zero multiplier.
If the constraint was given by $x_{1}+x_{2} \geq a$, for a given a, we obtain

$$
x_{1}(\mu)=x_{2}(\mu)=\frac{a}{4}+\sqrt{\frac{a^{2}}{16}+\frac{\mu}{2}} .
$$

Hence, for $a \neq 0$, we obtain $\left\|x(\mu)-x^{*}\right\|_{2}=O(\mu)$. It is only for the degenerate case, $a=0$, we obtain $\left\|x(\mu)-x^{*}\right\|_{2}=O(\sqrt{\mu})$.
3. (See the course material.)
4. (a) The objective function is $f(x)=e^{x_{1}}+x_{1} x_{2}+x_{2}^{2}-2 x_{2} x_{3}+x_{3}^{2}$. Differentiation give

$$
\nabla f(x)=\left(\begin{array}{c}
e^{x_{1}}+x_{2} \\
x_{1}+2 x_{2}-2 x_{3} \\
-2 x_{2}+2 x_{3}
\end{array}\right), \quad \nabla^{2} f(x)=\left(\begin{array}{crr}
e^{x_{1}} & 1 & 0 \\
1 & 2 & -2 \\
0 & -2 & 2
\end{array}\right)
$$

In particular, $\nabla f(\widetilde{x})=\left(\begin{array}{ll}1-2 & 2\end{array}\right)^{T}$. With $g_{1}(x)=-x_{1}^{2}-x_{2}^{2}-x_{3}^{2}+5$ we get $g_{1}(\widetilde{x})=4$, which mean that constraint 1 is not active in \widetilde{x}. The first-order of necessary optimality conditions require the existence of a $\tilde{\lambda}_{2}$ such that $\nabla f(\widetilde{x})=$ $a \tilde{\lambda}_{2}$ and $a^{T} \widetilde{x}+2=0$
The condition $\nabla f(\tilde{x})=a \tilde{\lambda}_{2}$ can not be fulfilled with $\tilde{\lambda}_{2}=0$. Hence, $\tilde{\lambda}_{2} \neq 0$ and we obtain

$$
a=\frac{1}{\tilde{\lambda}_{2}} \nabla f(\widetilde{x})=\frac{1}{\tilde{\lambda}_{2}}\left(\begin{array}{lll}
1 & -2 & 2
\end{array}\right)^{T} .
$$

The condition $a^{T} \widetilde{x}+2=0$ gives $\tilde{\lambda}_{2}=-1$. Hence, $a=\left(\begin{array}{ll}-1 & 2\end{array}-2\right)^{T}$.
If $a=\left(\begin{array}{ll}-1 & 2-2\end{array}\right)^{T}$, then \widetilde{x} fulfils the first order of necessary optimality condi tions together with $\tilde{\lambda}=(0-1)^{T}$
(b) As we only have one active linear constraint in \tilde{x} we obtain

$$
\nabla_{x x}^{2} \mathcal{L}(\widetilde{x}, \tilde{\lambda})=\nabla^{2} f(\widetilde{x})=\left(\begin{array}{rrr}
1 & 1 & 0 \\
1 & 2 & -2 \\
0 & -2 & 2
\end{array}\right)
$$

We also have that $A_{A}(\widetilde{x})=a^{T}$, where we can let $a^{T}=(B N)$ for $B=-1$ and $N=\left(\begin{array}{ll}2 & -2\end{array}\right)$. We then obtain a matrix whose columns form a basis for the null space of $A_{A}(\widetilde{x})$ as

$$
Z_{A}(\tilde{x})=\binom{-B^{-1} N}{I}=\left(\begin{array}{rr}
2 & -2 \\
1 & 0 \\
0 & 1
\end{array}\right)
$$

which gives

$$
Z_{A}(\widetilde{x})^{T} \nabla^{2} f(\widetilde{x}) Z_{A}(\widetilde{x})=\left(\begin{array}{rr}
10 & -8 \\
-8 & 6
\end{array}\right)
$$

But $Z_{A}(\widetilde{x})^{T} \nabla^{2} f(\widetilde{x}) Z_{A}(\widetilde{x}) \nsucceq 0$ since $Z_{A}(\widetilde{x})^{T} \nabla^{2} f(\widetilde{x}) Z_{A}(\widetilde{x})$ is a 2×2-matrix with negative determinant. Hence, \widetilde{x} does not fulfil the second-order necessary opti mality conditions and is therefore not a local minimizer
5. (a) The relaxed problem is a non-convex quadratic programming problem. To obtain a lower bound of the original problem we do need to calculate a global minimizer of this non-convex relaxed problem, which in general is not computationally tractable
(b) If we let $\left(S D P^{\prime}\right)$ be the problem arising as the constraint $Y=x x^{T}$ is added to ($S D P$) we can replace Y with $x x^{T}$, which by (i) gives

$$
\min c^{T} x+\frac{1}{2} x^{T} H x
$$

$\begin{aligned}\left(S D P^{\prime}\right) \quad \text { då } \quad\left(\begin{array}{cc}x x^{T} & x \\ x^{T} & 1\end{array}\right) & \succeq\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right), \\ x_{j}^{2}=x_{j}, \quad j & =1, \ldots, n .\end{aligned}$
By hint (ii) we can see that the constraint

$$
\left(\begin{array}{cc}
x x^{T} & x \\
x^{T} & 1
\end{array}\right) \succeq\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)
$$

is always fulfilled, hence $\left(S D P^{\prime}\right)$ may be written as
$\left(S D P^{\prime}\right)$

$$
\begin{array}{ll}
\min & c^{T} x+\frac{1}{2} x^{T} H x \\
& x_{j}^{2}=x_{j}, \quad j=1, \ldots, n .
\end{array}
$$

But $x_{j}^{2}=x_{j}$ if and only if $x_{j} \in\{0,1\}$. Hence, $\left(S D P^{\prime}\right)$ and (P) are equivalent.

