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e under the implicit condition that x; + x2 > 0. The first-order optimality con-
KTH Mathematics ditions of (P,) gives
1
z1(p) = ——~————~ =0,
1 (1) + 2(p)
m
SF2822 Applied nonlinear optimization, final exam za(p) — T1() + z2(p) =
Saturday June 5 2008 8.00-13.00
: : hese equations are symmetric in x1(p) and xo(p). Hence, z1(p) = x2(p).
Brief solutions Tt . ic i d H !

This mean that 2x1(p)? — p = 0, from which it follows that z1(u)? = p/2. If
one includes x1(p) = xao(u) in the implicit constraint, it follows that xq(u) =

xa(p) = \/pn/2. Since (P,) is a convex problem, this is a global minimizer.
We have The dual part of the trajectory, i.e. A(u), is normally given by \; (1) = p/gi(x (1)),

L 1 i=1,...,m. Here we only have one constraint, so
f($):§($1+1)2+5($2+2)27 9(x) = 3(z1 + 72 — 2)° + (w1 — 2)* — 6, Ap) = —L :\/E
N i 27
Vi(z) r1+1 Vg(z) 8I1+4I27]2> \/g+\/§
z) = ; g(w) = ;

22 + 2 4y + 8xg — 12 (b) As p — 0 it follows that z(u) — (0 0)7 and A() — 0. Let 2* = (0 0)7 and
10 8 4 X = 0. Then 2 and \* satisfy the first-order optimality conditions of (QP).
Vif(z) = < 01 ) R Vig(z) = ( 18 ) . Since (QP) is a convex problem, this is sufficient for global optimality of (QP).

(c) We have |z(u) — 2|2 = /. The square root comes from the fact that we
do not have strict complementarity at the solution, i.e., the constraint is active
with a zero multiplier.

If the constraint was given by z1 + z2 > a, for a given a, we obtain

min  $p? + 1p3 + p1 + 2p2 -
da —12p; — 12py = —6. a = = 2 A
oi(n) = z2(u) = 7+ + 5

This is a convex QP-problem with a globally optimal solution given by

(a) Insertion of numerical values in the expressions above gives the first QP-problem
according to

Hence, for a # 0, we obtain ||z(u) — 2*|la = O(p). It is only for the degenerate
p1+ 122 =1, case, a = 0, we obtain ||z(x) — 2*[|2 = O(\/fr).
p2 + 12X = -2,
—12p; — 12po = —6.
3. (See the course material.)
The solution is given by p; = 3/4, po = —1/4 and X\ = —7/48, which agree with
the printout from the SQP-solver.

(b) We can see that V2f(z) and V2g(z) are positive definite, independently of . 4. (a) The objective function is f(z) = €™ + z122 + 23 — 2x923 + 23. Differentiation
Moreover A is non-positive in all iterations. This implies that the solution to gives
each QP subproblem is optimal also for the case when the equality constraint 1 =
. . . el + 1o et 1 0
is changed to a less than or equal constraint. Hence, the iterates would not o
change at all if the constraint was changed as suggested. Vi) = | ert 2w =223 |, Vi(@)=]| 1 2 -2
(c¢) The inequality-constrained problem is a convex problem, and in addition a —2wy o+ 23 0 -2 2
relaxation of the original problem. Hence we get convergence towards a global In particular, Vf(Z) = (1 -2 2)T. With g1(z) = —2? — a3 — 2% + 5 we get
minimizer of this problem, which is also a global minimizer of (NLP). ¢1(Z) = 4, which mean that constraint 1 is not active in Z. The first-order of

necessary optimality conditions require the existence of a Ao such that V f(@) =
aXs and aT7 +2 = 0.

The condition Vf(Z) = aXs can not be fulfilled with Ay = 0. Hence, A2 #0,
and we obtain

1. 1 T
(Pu) min %x% + %z% — pln(zq + x2) a= Tzvf(l) = 5\*2 ( 1 -2 2 ) .

—
B
=

The problem (QP) is a convex quadratic program. The primal part of the
trajectory is obtained as minimizer to the barrier-transformed problem
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The condition a’% + 2 = 0 gives Ay = —1. Hence, a = (=1 2 —2)T.
Ifa= (-1 2-2)7T, then 7 fulfils the first order of necessary optimality condi-
tions together with A = (0 — 1)7T.

As we only have one active linear constraint in Z we obtain
1 1 0
Vi LEN=Vf@)=]|1 2 -2
0 -2 2

We also have that A4(Z) = a’, where we can let a” = (B N) for B = —1 and
N = (2 —2). We then obtain a matrix whose columns form a basis for the
null space of A4(Z) as

-2

-B-IN 2
ZA(F) = ( . ) =[1 o
0 1

which gives

- - _ 10 -8
Za(2)" V2 (2) Za(®) = :
-8 6
But Z4(2)TV2f(2)Za(T) # 0 since Z4(7)TV2f(Z)Za(T) is a 2 x 2-matrix with
negative determinant. Hence, & does not fulfil the second-order necessary opti-
mality conditions and is therefore not a local minimizer.

The relaxed problem is a non-convex quadratic programming problem. To ob-
tain a lower bound of the original problem we do need to calculate a global
minimizer of this non-convex relaxed problem, which in general is not compu-
tationally tractable.

If we let (SDP') be the problem arising as the constraint Y = 227 is added to
(SDP) we can replace Y with z2”, which by (i) gives

min CT.rJr%acTHz
T
(SDP') a 11 T = 0 0 )
271 00
LL?::L‘]', j=1,...,n

By hint (ii) we can see that the constraint

vzl oz 00
=
al 1 00
is always fulfilled, hence (SDP’) may be written as
min ¢’z + JaTHa
(SDP') ,
xj = xj, j=1,...,n

But L? = x; if and only if z; € {0,1}. Hence, (SDP’) and (P) are equivalent.



