
SF2822 Applied nonlinear optimization, final exam
Saturday December 20 2008 8.00–13.00

Brief solutions

1. (a) The quadratic programming subproblems must have nonnegative values on λ.
Since this is not the case in the prinout, the prinout cannot be correct.

(b) We have

f(x) = ex1 +
1
2
(x1 + x2 − 4)2 + (x1 − x2)2,

g(x) = −(x1 − 3)2 − x2
2 + 9,

∇f(x) =

(
ex1 + 3x1 − x2 − 4
−x1 + 3x2 − 4

)
, ∇g(x) =

(
−2(x1 − 3)
−2x2

)
,

∇2f(x) =

(
ex1 + 3 −1
−1 3

)
, ∇2g(x) =

(
−2 0

0 −2

)
.

Insertion of numerical values in the expressions above gives the first QP-problem
according to

minimize 1
2pTHp + cTp

subject to Ap ≥ b,

with

H =

(
4 −1

−1 3

)
, c =

(
−3
−4

)
, A =

(
6 0

)
, b =

(
0
)

.

This is a convex quadratic program. If we guess that the constraint is inactive,
we obtain

p = −H−1c =

(
13
11
19
11

)
.

For this p, it holds that Ap ≥ b, and hence we have the optimal solution to the
QP-problem, with λ = 0.

(c) The fact that the λ components from the prinout are negative suggests that
the inequality constraint is incorrectly treated as an equality, i.e., the printout
corresponds to

minimize ex1 + 1
2(x1 + x2 − 4)2 + (x1 − x2)2

subject to −(x1 − 3)2 − x2
2 + 9 = 0.
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2. (a) The iterations are illustrated in the figure below:

In the first iteration the search direction points at (4 0)T , which is feasible. At
this point, the multiplier of the constraint x2 ≥ 0 is negative, and the constraint
is deleted from the active set. In the second iteration, the search direction points
at (5 3)T , but is limited by the constraint −x1−x2 ≥ −5, which is added. The
search direction now points at (7/2 3/2)T , which is feasible. The multiplier is
positive, and the problem is thus solved.

(b) The iterations are illustrated in the figure below:

In the first iteration the search direction points at (4 0)T , but the step is limited
by the constraint x2 − x1 ≥ −3, which is added. A zero step is taken, and the
multiplier for the constraint x2 ≥ 0 is negative. This constraint is deleted. The
new step is limited by the constraint −x1 − x2 ≥ −5, which is added. A zero
step is taken, and the multiplier for the constraint x2 − x1 ≥ −3 is negative.
This constraint is deleted, and the new step leads to the point (7/2 3/2)T ,
which is feasible. The multiplier is positive, and the problem is thus solved.

3. (See the course material.)

4. The objective function is f(x) = ex1 + 1
2x2

1 + x1x2 + 1
2x2

2 + x2
3 − 2x1 − x2 − 3x3.
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Differentiation gives

∇f(x) =


ex1 + x1 + x2 − 2

x1 + x2 − 1
2x3 − 3

 , ∇2f(x) =


ex1 + 1 1 0

1 1 0
0 0 2

 .

(a) Insertion of numerical values gives ∇f(x̃) = −(1 1 1)T . With g1(x) = x2
1 +x2

2 +
x2

3 − 1 we get g1(x̃) = 0, which mean that constraint 1 is active in x̃. With
g2(x) = −x2

1 − x2
2 − x2

3 + 2 we get g2(x̃) = 1, which mean that constraint 2 is
not active in x̃.
The first-order of necessary optimality conditions require the existence of a λ̃1

such that ∇f(x̃) = ∇g1(x̃)λ̃1. This holds for λ̃1 = −1, i.e., the first-order
necessary optimality conditions hold at x̃ with Lagrange multiplier vector λ̃ =
(−1 0)T .

(b) We obtain

∇2
xxL(x, λ) = ∇2f(x)− λ1∇2g1(x) =


ex1 + 1− 2λ1 1 0

1 1− 2λ1 0
0 0 2− 2λ1

 .

In particular,

∇2
xxL(x̃, λ̃) = ∇2f(x̃)− λ̃1∇2g1(x̃) =


4 1 0
1 3 0
0 0 4

 .

As ∇2
xxL(x̃, λ̃) � 0, it must hold that Z(x̃)T∇2

xxL(x̃, λ̃)Z(x̃) � 0, and we need
not compute Z(x̃). Hence, the second-order sufficient optimality conditions
hold.

(c) As λ̃1 ≤ 0, it follows that x̃ satisfies the first-order necessary optimality condi-
tions for

(NLP ′)
minimize ex1 + 1

2x2
1 + x1x2 + 1

2x2
2 + x2

3 − 2x1 − x2 − 3x3

subject to x2
1 + x2

2 + x2
3 + x1 + x2 − x3 ≤ 0.

But (NLP ′) is a convex optimization problem, since ex1 + 1
2x2

1 + x1x2 + 1
2x2

2 +
x2

3 − 2x1 − x2 − 3x3 and x2
1 + x2

2 + x2
3 + x1 + x2 − x3 are both convex functions

on IRn. Hence, since (NLP ′) is a relaxation of (NLP ) for which the objective
function is identical and the global minimizer x̃ is feasible to (NLP ), it follows
that x̃ is a global minimizer to (NLP ).

5. Note that Xii = eT
i Xei, where ei is the ith unit vector. In addition, we may write

eT
i Xei = trace(eie

T
i X). Hence, we may rewrite (SDP2) as

minimize
X∈Sn

trace(WX)

subject to trace(eie
T
i X) = 1, i = 1, . . . , n,

X � 0.
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If we take the dual of this semidefinite program we obtain

maximize
y∈IRn

∑n
i=1 yi

subject to
∑n

i=1 eie
T
i yi � W.

By noting that
∑n

i=1 yi = eTy, where e is the vector of ones, and that
∑n

i=1 eie
T
i yi =

diag(y), an equivalent form is

maximize
y∈IRn

eTy

subject to diag(y) � W.

But this problem is equivalent to (SDP1), since we may change the sign of the
objective function while changing maximization to minimization without altering
the problem.

(As (SDP1) and (SDP2) both have nonempty relative interior, the duality gap is
zero, and they provide the same bound on the optimal value of the original problem.)

This exercise is based on Exercise 5.39 in [1], where a more thorough discussion can
be found.
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