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Brief solutions

The objective function is f(z) = €*' — 23 + x129 + %x% + 223 — 21 + 29 — 273 and
the constraint functions are gi(x) = 2% + 23 + 23 — 1, go() = —2% — 23 — 23 + 2.
g3(x) = xo. Differentiation gives

ert — 2z +x9 — 1 211 219 2x3
Vi) = 1+ 22+ 1 . Vo@) ' =] -2z 229 —2x3 |,
4wy — 2 0 1 0
el — 2 —2X1 + 2 1 0
V2. L(z,\) = 1 1—2X\ +2Xo 0
0 0 4—2)\ +2)

(a) Insertion of numerical values gives Vf(Z) = (0 1 2)T, g1(Z) = 0, g2(Z) = 1 and
93(Z) = 0. Hence, 7 is feasible with constraints 1 and 3 active.
AsVg1(Z) = (001)T and Vg3(7) = (01 0)7, it follows that 7 is a regular point.
Hence, for & to be a local minimizer, the first-order of necessary optimality
conditions must hold. They require the existence of a A1 and 5\3, with Ag > 0,
such that V£(Z) = Vg1 (Z)A\1 + Vg3(2) A3, ie.,

0 00 ~
A1
1]1=101 <~ ),
A3
2 2 0
which is satisfied for A\; = 1, A3 = 1, i.e., the first-order necessary optimality
conditions hold at # with Lagrange multiplier vector A = (1 0 1)T.

We obtain
-3 1 0
Vi LE N =Vi@E) - MVig@) =] 1 -1 0
0 0 2

We obtain Z(Z) = (1 0 0)7, so that Z(Z)TV2,L(%,\)Z(Z) < 0. Hence, the
second-order necessary optimality conditions do not hold, i.e., Z is not a local
minimizer to (NLP).

As for 7, insertion of numerical values gives V(%) = (e—3 2 —2)T, g1(7) = 0,
g2(Z) = 1 and g¢3(Z) = 0. Hence, T is feasible with constraints 1 and 3 active.
As Vg1(Z) = (200)7 and Vg3(z) = (01 0)7, it follows that Z is a regular point.
Hence, for Z to be a local minimizer, the first-order of necessary optimality
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conditions must hold. They require theA existence of a 5\1 and 5\3, with 5\3 >0,
such that Vf(Z) = Vg1 (Z)\1 + Vg3(Z) A3, i.e.,

e—3 2 0 “
A1
2 =10 1 N ,
A3
-2 0 0

which has no solution. Hence, as T is a regular point, Z is not a local minimizer
to (NLP).

We conclude that neither Z nor z are local minimizers to (NLP).

2. If the problem is put on the form

minimize  f(x)

subject to g(x) >0, z € IR?

we obtain

To I
Vf(l")T:(xl-l-fb‘Q—i-% $1+SE2—%)7 VQ(JU)T: I 01,
0 1

1 1-—
V2 Lz, \) = ( A1 ) .
1-—X\ 1

With (0 = (2 3)T and A0 = (100)7, the first QP-problem becomes

L 1o P1 P1
1
minimize 5 (p1 p +{5 2
(o 2)<0 1)(?2) ( )<p2>
2 0
subject to <p1 ) > | -2
b2 B

N 1
2
The optimal solution of the QP-problem is given by the feasible point which is closest,

in 2-norm, to (=5 —2)7, ie., p©@ = (-2 $)T with Lagrange multipliers A = (5
18—9 0)”. Thus, we have A, and z(!) is given by () = 20 4 p(©) = (0 1)

O~ N

(See the course material.)

(a) We may write A = (I a), with a = (1 —1 1 —1)T. Then, a matrix whose

columns form a basis for the nullspace of A is given by Z = (—a® 1)T =
(-1 1 -1 1 1T
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(b) As the new cost may be written as ¢ — 27e;, the step to the minimizer of the
new problem can be written as p = Zpz, where

ZTH Zpy; = —ZT(Hz* + ¢ — 27¢y).

As 2" is optimal to the original problem we have ZT(Hx* + ¢) = 0, so that
ZTHZpy; = 27Z7%e;. Insertion of numerical values gives 15p, = —27, i.e.,
pz = —27/15 = —9/5. Hence, if the optimal solution to the new problem is
denoted by x, we obtain

-1 6.8000
1 2.2000

_ %9
r=2x % -1 | = 4.8000
1 0.2000
1 —0.8000

(¢) As Z5 < 0, T is not feasible to the third problem. In the previous exercise,
we computed p as the first step in an active-set method for solving the third
problem. The maximum steplength is given by the maximum « such that
¥ + ap > 0. We obtain a = 5/9. The new point, Z, becomes Z = z* +5/9p =
(6 34 10)7. This point is in fact optimal, as the Lagrange multiplier of an
added constraint will become positive. If the constraint x5 > 0 is added as a
fifth constraint, this can be verified algebraically by solving

—24 1 0 0 0 O A
—1 0 1 0 0 0 Ao
Hi+c= 21=]10 0 1 0 0 Xs |
—6 0O 0 0 1 0 M\
-3 1 -1 1 -1 1 A5

to obtain the Lagrange multipliers. We obtain A= =24, Ay = —1, A3 = 2,
A = —6, A5 = 12. As A5 > 0, the solution is optimal.

5.  (a) The function f(y) = y2 has derivative f'(y) = 0 for y < 0 and f'(y) = 2y for
y > 0. Hence, f'(y) is continuous with f/(0) = 0. The second derivative is given
by f"(y) =0 for y < 0 and f”(y) =1 for y > 0. Hence, f” is discontinuous at
y = 0. As a consequence, the objective function has discontinuous Hessian at
points where plx = u; for some i € U or plz = I; for some i € L.

(b) Consider a fixed z and minimize over y in (QP). We want to show that y; =
(pfx —wi)4, i €U, and y; = (I; — plx)+, i € L. Assume that plz — u; < 0 for
some i € U. Then, y; = 0, since y; = 0 is the the minimizer of y?. Similarly,
if piTx — u; > 0, the optimal choice of y; is y; = p;frx — Uu;, as y? is a strictly
increasing function for y; > 0. Hence, y; = (plx —u;) 1, i € U, as required. The
argument for ¢ € £ is analogous.

(¢) We may write the Lagrangian function as

Wz, y, Am) =35> u2+ 3> y2 = > Ny —plz+w) =) Ny + plz — ;) — a'n,
€U €L €U 1€L
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for Lagrange multipliers A\; > 0, ¢ € Y U L, and n > 0. Let F; be the matrix
whose rows comprise p! , i € Z, and analogously for Py. Let subscripts "¢ and
"L" respectively denote the vectors with components in the two sets. Also, let
Ay = diag(\y), Yy = diag(yy), Az = diag(Az), Yz = diag(yz), X = diag(x)
and N = diag(n). For a positive barrier parameter u, the perturbed first-order
optimality conditions may be written

Py — Pide —n =0,
Yu — Ay =0,
yc — Az =0,

Ay (yu — Puz 4 uy) = pe,
Ag(yc + Pex — ) = pe,
Nz = pe.



