

SF2822 Applied nonlinear optimization, final exam Wednesday June 102009 8.00-13.00 Brief solutions

1. The objective function is $f(x)=e^{x_{1}}-x_{1}^{2}+x_{1} x_{2}+\frac{1}{2} x_{2}^{2}+2 x_{3}^{2}-x_{1}+x_{2}-2 x_{3}$ and the constraint functions are $g_{1}(x)=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}-1, g_{2}(x)=-x_{1}^{2}-x_{2}^{2}-x_{3}^{2}+2$. $g_{3}(x)=x_{2}$. Differentiation gives

$$
\begin{aligned}
\nabla f(x) & =\left(\begin{array}{c}
e^{x_{1}}-2 x_{1}+x_{2}-1 \\
x_{1}+x_{2}+1 \\
4 x_{3}-2
\end{array}\right), \\
\nabla_{x x}^{2} \mathcal{L}(x, \lambda) & =\left(\begin{array}{crr}
e^{x_{1}}-2-2 \lambda_{1}+2 \lambda_{2} & 1 & 2)^{T}=\left(\begin{array}{rrr}
2 x_{1} & 2 x_{2} & 2 x_{3} \\
-2 x_{1} & -2 x_{2} & -2 x_{3} \\
0 & 1 & 0
\end{array}\right), \\
1 & 1-2 \lambda_{1}+2 \lambda_{2} & 0 \\
0 & 0 & 4-2 \lambda_{1}+2 \lambda_{2}
\end{array}\right) .
\end{aligned}
$$

(a) Insertion of numerical values gives $\nabla f(\widetilde{x})=\left(\begin{array}{lll}0 & 1 & 2\end{array}\right)^{T}, g_{1}(\widetilde{x})=0, g_{2}(\widetilde{x})=1$ and $g_{3}(\widetilde{x})=0$. Hence, \widetilde{x} is feasible with constraints 1 and 3 active.
As $\nabla g_{1}(\widetilde{x})=\left(\begin{array}{lll}0 & 0 & 1\end{array}\right)^{T}$ and $\nabla g_{3}(\widetilde{x})=\left(\begin{array}{lll}0 & 1 & 0\end{array}\right)^{T}$, it follows that \widetilde{x} is a regular point. Hence, for \widetilde{x} to be a local minimizer, the first-order of necessary optimality conditions must hold. They require the existence of a $\tilde{\lambda}_{1}$ and $\tilde{\lambda}_{3}$, with $\tilde{\lambda}_{3} \geq 0$, such that $\nabla f(\widetilde{x})=\nabla g_{1}(\widetilde{x}) \tilde{\lambda}_{1}+\nabla g_{3}(\widetilde{x}) \tilde{\lambda}_{3}$, i.e.,

$$
\left(\begin{array}{l}
0 \\
1 \\
2
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
0 & 1 \\
2 & 0
\end{array}\right)\binom{\tilde{\lambda}_{1}}{\tilde{\lambda}_{3}}
$$

which is satisfied for $\tilde{\lambda}_{1}=1, \tilde{\lambda}_{3}=1$, i.e., the first-order necessary optimality conditions hold at \widetilde{x} with Lagrange multiplier vector $\tilde{\lambda}=\left(\begin{array}{lll}1 & 0 & 1\end{array}\right)^{T}$.
We obtain

$$
\nabla_{x x}^{2} \mathcal{L}(\widetilde{x}, \tilde{\lambda})=\nabla^{2} f(\widetilde{x})-\tilde{\lambda}_{1} \nabla^{2} g_{1}(\widetilde{x})=\left(\begin{array}{rrr}
-3 & 1 & 0 \\
1 & -1 & 0 \\
0 & 0 & 2
\end{array}\right)
$$

We obtain $Z(\widetilde{x})=\left(\begin{array}{lll}1 & 0 & 0\end{array}\right)^{T}$, so that $Z(\widetilde{x})^{T} \nabla_{x x}^{2} \mathcal{L}(\widetilde{x}, \tilde{\lambda}) Z(\widetilde{x})<0$. Hence, the second-order necessary optimality conditions do not hold, i.e., \widetilde{x} is not a local minimizer to ($N L P$).
As for \widehat{x}, insertion of numerical values gives $\nabla f(\widehat{x})=(e-3 \quad 2-2)^{T}, g_{1}(\widehat{x})=0$, $g_{2}(\widehat{x})=1$ and $g_{3}(\widehat{x})=0$. Hence, \widehat{x} is feasible with constraints 1 and 3 active.
As $\nabla g_{1}(\widehat{x})=\left(\begin{array}{lll}2 & 0 & 0\end{array}\right)^{T}$ and $\nabla g_{3}(\widehat{x})=\left(\begin{array}{lll}0 & 1 & 0\end{array}\right)^{T}$, it follows that \widehat{x} is a regular point. Hence, for \widehat{x} to be a local minimizer, the first-order of necessary optimality
conditions must hold. They require the existence of a $\hat{\lambda}_{1}$ and $\hat{\lambda}_{3}$, with $\hat{\lambda}_{3} \geq 0$, such that $\nabla f(\widehat{x})=\nabla g_{1}(\widehat{x}) \hat{\lambda}_{1}+\nabla g_{3}(\widehat{x}) \hat{\lambda}_{3}$, i.e.,

$$
\left(\begin{array}{c}
e-3 \\
2 \\
-2
\end{array}\right)=\left(\begin{array}{ll}
2 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right)\binom{\hat{\lambda}_{1}}{\hat{\lambda}_{3}},
$$

which has no solution. Hence, as \widehat{x} is a regular point, \widehat{x} is not a local minimizer to ($N L P$).
We conclude that neither \widetilde{x} nor \widehat{x} are local minimizers to $(N L P)$.
2. If the problem is put on the form

$$
\begin{array}{ll}
\operatorname{minimize} & f(x) \\
\text { subject to } & g(x) \geq 0, \quad x \in \mathbb{R}^{2},
\end{array}
$$

we obtain

$$
\begin{aligned}
\nabla f(x)^{T} & =\left(\begin{array}{ll}
x_{1}+x_{2}+\frac{5}{2} & x_{1}+x_{2}-\frac{1}{2}
\end{array}\right), \quad \nabla g(x)^{T}=\left(\begin{array}{cc}
x_{2} & x_{1} \\
1 & 0 \\
0 & 1
\end{array}\right), \\
\nabla_{x x}^{2} \mathcal{L}(x, \lambda) & =\left(\begin{array}{cc}
1 & 1-\lambda_{1} \\
1-\lambda_{1} & 1
\end{array}\right) .
\end{aligned}
$$

With $x^{(0)}=\left(2 \frac{1}{2}\right)^{T}$ and $\lambda^{(0)}=\left(\begin{array}{lll}1 & 0 & 0\end{array}\right)^{T}$, the first QP-problem becomes

$$
\begin{array}{ll}
\text { minimize } & \frac{1}{2}\left(\begin{array}{ll}
p_{1} & p_{2}
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\binom{p_{1}}{p_{2}}+\left(\begin{array}{ll}
5 & 2
\end{array}\right)\binom{p_{1}}{p_{2}} \\
\text { subject to } & \left(\begin{array}{ll}
\frac{1}{2} & 2 \\
1 & 0 \\
0 & 1
\end{array}\right)\binom{p_{1}}{p_{2}} \geq\left(\begin{array}{r}
0 \\
-2 \\
-\frac{1}{2}
\end{array}\right) .
\end{array}
$$

The optimal solution of the QP-problem is given by the feasible point which is closest, in 2-norm, to $(-5-2)^{T}$, i.e., $p^{(0)}=\left(-2 \frac{1}{2}\right)^{T}$ with Lagrange multipliers $\lambda^{(1)}=\left(\frac{5}{4}\right.$ $\left.\frac{19}{8} 0\right)^{T}$. Thus, we have $\lambda^{(1)}$, and $x^{(1)}$ is given by $x^{(1)}=x^{(0)}+p^{(0)}=(01)^{T}$.
3. (See the course material.)
4. (a) We may write $A=\binom{I}{a}$, with $a=\left(\begin{array}{ll}1-1 & 1-1\end{array}\right)^{T}$. Then, a matrix whose columns form a basis for the nullspace of A is given by $Z=\left(-a^{T} 1\right)^{T}=$ $\left(\begin{array}{lllll}-1 & 1 & -1 & 1 & 1\end{array}\right)^{T}$.
(b) As the new cost may be written as $c-27 e_{1}$, the step to the minimizer of the new problem can be written as $p=Z p_{Z}$, where

$$
Z^{T} H Z p_{Z}=-Z^{T}\left(H x^{*}+c-27 e_{1}\right) .
$$

As x^{*} is optimal to the original problem we have $Z^{T}\left(H x^{*}+c\right)=0$, so that $Z^{T} H Z p_{Z}=27 Z^{T} e_{1}$. Insertion of numerical values gives $15 p_{z}=-27$, i.e., $p_{Z}=-27 / 15=-9 / 5$. Hence, if the optimal solution to the new problem is denoted by \bar{x}, we obtain

$$
\bar{x}=x^{*}-\frac{9}{5}\left(\begin{array}{r}
-1 \\
1 \\
-1 \\
1 \\
1
\end{array}\right)=\left(\begin{array}{r}
6.8000 \\
2.2000 \\
4.8000 \\
0.2000 \\
-0.8000
\end{array}\right) \text {. }
$$

(c) As $\bar{x}_{5}<0, \bar{x}$ is not feasible to the third problem. In the previous exercise, we computed p as the first step in an active-set method for solving the third problem. The maximum steplength is given by the maximum α such that $x^{*}+\alpha p \geq 0$. We obtain $\alpha=5 / 9$. The new point, \widehat{x}, becomes $\widehat{x}=x^{*}+5 / 9 p=$ $\left(\begin{array}{ll}6 & 3\end{array} 110\right)^{T}$. This point is in fact optimal, as the Lagrange multiplier of an added constraint will become positive. If the constraint $x_{5} \geq 0$ is added as a fifth constraint, this can be verified algebraically by solving

$$
H \widehat{x}+c=\left(\begin{array}{r}
-24 \\
-1 \\
2 \\
-6 \\
-3
\end{array}\right)=\left(\begin{array}{rrrrr}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
1 & -1 & 1 & -1 & 1
\end{array}\right)\left(\begin{array}{l}
\hat{\lambda}_{1} \\
\hat{\lambda}_{2} \\
\hat{\lambda}_{3} \\
\hat{\lambda}_{4} \\
\hat{\lambda}_{5}
\end{array}\right),
$$

to obtain the Lagrange multipliers. We obtain $\hat{\lambda}_{1}=-24, \hat{\lambda}_{2}=-1, \hat{\lambda}_{3}=2$, $\hat{\lambda}_{4}=-6, \hat{\lambda}_{5}=12$. As $\hat{\lambda}_{5} \geq 0$, the solution is optimal.
5. (a) The function $f(y)=y_{+}^{2}$ has derivative $f^{\prime}(y)=0$ for $y<0$ and $f^{\prime}(y)=2 y$ for $y>0$. Hence, $f^{\prime}(y)$ is continuous with $f^{\prime}(0)=0$. The second derivative is given by $f^{\prime \prime}(y)=0$ for $y<0$ and $f^{\prime \prime}(y)=1$ for $y>0$. Hence, $f^{\prime \prime}$ is discontinuous at $y=0$. As a consequence, the objective function has discontinuous Hessian at points where $p_{i}^{T} x=u_{i}$ for some $i \in \mathcal{U}$ or $p_{i}^{T} x=l_{i}$ for some $i \in \mathcal{L}$.
(b) Consider a fixed x and minimize over y in $(Q P)$. We want to show that $y_{i}=$ $\left(p_{i}^{T} x-u_{i}\right)_{+}, i \in \mathcal{U}$, and $y_{i}=\left(l_{i}-p_{i}^{T} x\right)_{+}, i \in \mathcal{L}$. Assume that $p_{i}^{T} x-u_{i}<0$ for some $i \in \mathcal{U}$. Then, $y_{i}=0$, since $y_{i}=0$ is the the minimizer of y_{i}^{2}. Similarly, if $p_{i}^{T} x-u_{i} \geq 0$, the optimal choice of y_{i} is $y_{i}=p_{i}^{T} x-u_{i}$, as y_{i}^{2} is a strictly increasing function for $y_{i}>0$. Hence, $y_{i}=\left(p_{i}^{T} x-u_{i}\right)_{+}, i \in \mathcal{U}$, as required. The argument for $i \in \mathcal{L}$ is analogous.
(c) We may write the Lagrangian function as

$$
l(x, y, \lambda, \eta)=\frac{1}{2} \sum_{i \in \mathcal{U}} y_{i}^{2}+\frac{1}{2} \sum_{i \in \mathcal{L}} y_{i}^{2}-\sum_{i \in \mathcal{U}} \lambda_{i}\left(y_{i}-p_{i}^{T} x+u_{i}\right)-\sum_{i \in \mathcal{L}} \lambda_{i}\left(y_{i}+p_{i}^{T} x-l_{i}\right)-x^{T} \eta,
$$

for Lagrange multipliers $\lambda_{i} \geq 0, i \in \mathcal{U} \cup \mathcal{L}$, and $\eta \geq 0$. Let $P_{\mathcal{U}}$ be the matrix whose rows comprise $p_{i}^{T}, i \in \mathcal{I}$, and analogously for $P_{\mathcal{U}}$. Let subscripts " $\mathcal{U}^{\prime \prime}$ and ${ }^{\prime \prime} \mathcal{L}^{\prime \prime}$ respectively denote the vectors with components in the two sets. Also, let $\Lambda_{\mathcal{U}}=\operatorname{diag}\left(\lambda_{\mathcal{U}}\right), Y_{\mathcal{U}}=\operatorname{diag}\left(y_{\mathcal{U}}\right), \Lambda_{\mathcal{L}}=\operatorname{diag}\left(\lambda_{\mathcal{L}}\right), Y_{\mathcal{L}}=\operatorname{diag}\left(y_{\mathcal{L}}\right), X=\operatorname{diag}(x)$ and $N=\operatorname{diag}(\eta)$. For a positive barrier parameter μ, the perturbed first-order optimality conditions may be written

$$
\begin{aligned}
P_{\mathcal{U}}^{T} \lambda_{\mathcal{U}}-P_{\mathcal{L}}^{T} \lambda_{\mathcal{L}}-\eta & =0, \\
y_{\mathcal{U}}-\lambda_{\mathcal{U}} & =0, \\
y_{\mathcal{L}}-\lambda_{\mathcal{L}} & =0, \\
\Lambda_{\mathcal{U}}\left(y_{\mathcal{U}}-P_{\mathcal{U}} x+u_{\mathcal{U}}\right) & =\mu e, \\
\Lambda_{\mathcal{L}}\left(y_{\mathcal{L}}+P_{\mathcal{L}} x-l_{\mathcal{L}}\right) & =\mu e, \\
N x & =\mu e .
\end{aligned}
$$

