SF2822 Applied nonlinear optimization, final exam Thursday December 17 2009 8.00-13.00 Brief solutions

1. No constraints are active at the initial point. Hence, the working set is empty, i.e., $\mathcal{W}=\emptyset$. Since $H=I$ and $c=0$, we obtain $p^{(0)}=-\left(H x^{(0)}+c\right)=-x^{(0)}$. The maximum steplength is given by

$$
\alpha_{\max }=\min _{i: a_{i}^{T} p^{(0)}<0} \frac{a_{i}^{T} x^{(0)}-b_{i}}{-a_{i}^{T} p^{(0)}}=\frac{1}{5}
$$

where the minimium is attained for $i=3$. Consequently, $\alpha^{(0)}=1 / 5$ so that

$$
x^{(1)}=x^{(0)}+\alpha^{(0)} p^{(0)}=\left(\begin{array}{l}
0 \\
1 \\
2
\end{array}\right)+\frac{1}{5}\left(\begin{array}{r}
0 \\
-1 \\
-2
\end{array}\right)=\left(\begin{array}{c}
0 \\
\frac{4}{5} \\
\frac{8}{5}
\end{array}\right)
$$

with $\mathcal{W}=\{3\}$. The solution to the corresponding equality-constrained quadratic progam is given by

$$
\left(\begin{array}{llll}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 2 \\
1 & 1 & 2 & 0
\end{array}\right)\left(\begin{array}{c}
p_{1}^{(1)} \\
p_{2}^{(1)} \\
p_{3}^{(1)} \\
-\lambda_{3}^{(2)}
\end{array}\right)=-\left(\begin{array}{c}
0 \\
\frac{4}{5} \\
\frac{8}{5} \\
0
\end{array}\right)
$$

One way of solving this system of linear equations is to first express $p^{(1)}$ in $\lambda_{3}^{(2)}$ from the first three equations as

$$
p_{1}^{(1)}=\lambda_{3}^{(2)}, \quad p_{2}^{(1)}=-\frac{4}{5}+\lambda_{3}^{(2)}, \quad p_{3}^{(1)}=-\frac{8}{5}+2 \lambda_{3}^{(2)}
$$

Insertion into the last equation gives $\lambda_{3}^{(2)}=2 / 3$, so that

$$
p^{(1)}=\left(\begin{array}{lll}
\frac{2}{3} & -\frac{2}{15} & -\frac{4}{15}
\end{array}\right)^{T}
$$

The maximum steplength is given by

$$
\alpha_{\max }=\min _{i: a_{i}^{T} p^{(0)}<0} \frac{a_{i}^{T} x^{(0)}-b_{i}}{-a_{i}^{T} p^{(0)}}=\infty
$$

as $A p \geq 0$. Hence, $\alpha^{(1)}=1$, so that

$$
x^{(2)}=x^{(1)}+\alpha^{(1)} p^{(1)}=\left(\begin{array}{c}
0 \\
\frac{4}{5} \\
\frac{8}{5}
\end{array}\right)+\left(\begin{array}{r}
\frac{2}{3} \\
-\frac{2}{15} \\
-\frac{4}{15}
\end{array}\right)=\left(\begin{array}{c}
\frac{2}{3} \\
\frac{2}{3} \\
\frac{4}{3}
\end{array}\right) .
$$

Since $\lambda_{3}^{(2)} \geq 0$, it follows that $x^{(2)}$ is the optimal solution.
2. (a) Since $A x^{0)}>b$, there is no need to introduce s. We may let $s^{(0)}=A x^{0}-b=$ $(111)^{T}$. Then, as $A x-s=b$ is a linear equation, we will have $s^{(k)}=A x^{(k)}-b$ throughout. Consequently, $s^{(k)}$ is just a notation for $A x^{(k)}-b$ in this situation.
(b) The linear system of equations takes the form

$$
\left(\begin{array}{cc}
H & -A^{T} \\
\operatorname{diag}\left(\lambda^{(0)}\right) A & \operatorname{diag}\left(A x^{(0)}-b\right)
\end{array}\right)\binom{\Delta x}{\Delta \lambda}=-\binom{H x^{(0)}+c-A^{T} \lambda^{(0)}}{\operatorname{diag}\left(A x^{(0)}-b\right) \operatorname{diag}\left(\lambda^{(0)}\right) e-\mu^{(0)} e},
$$

where e is the vector of ones. Insertion of numerical values gives

$$
\left(\begin{array}{rrrrrr}
1 & 0 & 0 & -2 & -1 & -1 \\
0 & 1 & 0 & -1 & -2 & -1 \\
0 & 0 & 1 & -1 & -1 & -2 \\
2 & 1 & 1 & 1 & 0 & 0 \\
2 & 4 & 2 & 0 & 1 & 0 \\
3 & 3 & 6 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{r}
\Delta x_{1} \\
\Delta x_{2} \\
\Delta x_{3} \\
\Delta \lambda_{1} \\
\Delta \lambda_{2} \\
\Delta \lambda_{3}
\end{array}\right)=-\left(\begin{array}{r}
-7 \\
-7 \\
-7 \\
0 \\
1 \\
2
\end{array}\right) .
$$

(c) The unit step is accepted only if $A\left(x^{(0)}+\Delta x\right)-b>0$ and $\lambda^{(0)}+\Delta \lambda>0$. Since $A \Delta x \geq 0$, there is no restriction on the step for the x-variables, but since $\lambda_{1}^{(0)}+\Delta \lambda_{1} \ngtr 0$, the unit step is not accepted for the λ-variables. We may for example let $\alpha^{(0)}=0.99 \alpha_{\max }$, where $\alpha_{\max }$ is the maximum step, i.e., $\alpha_{\max }=-\lambda_{1}^{(0)} /\left(\Delta \lambda_{1}\right)$. Then $x^{(1)}=x^{(0)}+\alpha^{(0)} \Delta x$ and $\lambda^{(1)}=\lambda^{(0)}+\alpha^{(0)} \Delta \lambda$.
3. (See the course material.)
4. (a) Since $\left(N L P^{\prime}\right)$ is formed by perturbing the first constraint of $(N L P)$ from $h(x) \geq$ 0 to $h(x) \geq 1 / 2$, sensitivity analysis gives the estimate

$$
f(\widetilde{x})+\frac{1}{2} \tilde{\lambda}_{1}=f(\widetilde{x})+1=6 .
$$

(b) The QP-subproblem takes the form

$$
\begin{array}{ll}
\text { minimize } & \frac{1}{2} p^{T} \nabla_{x x}^{2} \mathcal{L}\left(x^{(0)}, \lambda^{(0)}\right) p+\nabla f\left(x^{(0)}\right)^{T} p \\
\text { subject to } & \nabla g\left(x^{(0)}\right) p \geq-g\left(x^{(0)}\right) .
\end{array}
$$

We obtain

$$
\begin{aligned}
\nabla_{x x}^{2} \mathcal{L}\left(x^{(0)}, \lambda^{(0)}\right) & =\nabla^{2} f\left(x^{(0)}\right)-\lambda_{1}^{(0)} \nabla^{2} h\left(x^{(0)}\right) \\
& =\left(\begin{array}{rr}
4 & -2 \\
-2 & 2
\end{array}\right)-2\left(\begin{array}{ll}
-1 & -1 \\
-1 & -1
\end{array}\right)=\left(\begin{array}{ll}
6 & 0 \\
0 & 4
\end{array}\right) .
\end{aligned}
$$

Insertion of numerical values gives

$$
\begin{array}{ll}
\operatorname{minimize} & 3 p_{1}^{2}+2 p_{2}^{2}+4 p_{1} \\
\text { subject to } & 2 p_{1} \geq \frac{1}{2}, \\
& p_{1} \geq-5, \\
& p_{2} \geq-4 .
\end{array}
$$

This is a separable problem, so that minimization can be done with respect to p_{1} and p_{2} independently. We obtain $p_{1}=1 / 4$ and $p_{2}=0$ with Lagrange multipliers $\lambda_{1}=11 / 4, \lambda_{2}=0$ and $\lambda_{3}=0$. Consequently,

$$
x^{(1)}=\binom{\frac{21}{4}}{4}, \quad \lambda^{(1)}=\left(\begin{array}{c}
\frac{11}{4} \\
0 \\
0
\end{array}\right)
$$

5. The second-order sufficient optimality conditions for $\left(N L P_{1}\right)$ imply that
(i) $g\left(x^{*}\right) \geq 0$,
(ii) $\nabla f\left(x^{*}\right)=A\left(x^{*}\right)^{T} \lambda^{*}$ for some $\lambda^{*} \geq 0$,
(iii) $\quad \lambda_{i}^{*} g_{i}\left(x^{*}\right)=0, i=1, \ldots, m$, and
(iv) $\quad Z_{+}\left(x^{*}\right)^{T} \nabla_{x x}^{2} \mathcal{L}\left(x^{*}, \lambda^{*}\right) Z_{+}\left(x^{*}\right) \succ 0$,
where $A_{+}\left(x^{*}\right)$ contains the rows of $A\left(x^{*}\right)$ for which λ^{*} has positive components, and $Z_{+}\left(x^{*}\right)$ is a matrix whose columns form a basis for $\operatorname{null}\left(A_{+}\left(x^{*}\right)\right)$.
We may write $\left(N L P_{2}\right)$ as
$\left(N L P_{2}\right)$

$$
\begin{array}{ll}
\operatorname{minimize} & \tilde{f}(z, x) \\
\text { subject to } & \widetilde{g}(z, x) \geq 0
\end{array}
$$

with

$$
\widetilde{f}(z, x)=z, \quad \widetilde{g}(z, x)=\binom{z-f(x)}{g(x)}
$$

Associated with $\left(N L P_{2}\right)$, we may define the Lagrangian function

$$
\tilde{\mathcal{L}}(z, x, \mu, \eta)=z-\mu(z-f(x))-\eta^{T} g(x)
$$

where μ is the Lagrange multiplier associated with $z-f(x) \geq 0$ and η are the Lagrange multipliers associated with $g(x) \geq 0$.
We now want to find z^{*}, μ^{*} and η^{*} so that the second-order sufficient optimality conditions (i)-(iv) hold, but associated with $\left(N L P_{2}\right)$. This means that we want to find z^{*}, μ^{*} and η^{*} such that
(i') $\quad\binom{z^{*}-f\left(x^{*}\right)}{g\left(x^{*}\right)} \geq\binom{ 0}{0}$,
(ii') $\quad\binom{1}{0}=\left(\begin{array}{cc}1 & 0 \\ -\nabla f\left(x^{*}\right) & A\left(x^{*}\right)^{T}\end{array}\right)\binom{\mu^{*}}{\eta^{*}}$ for some $\mu^{*} \geq 0$ and $\eta^{*} \geq 0$,
(iii') $\quad \mu^{*}\left(z^{*}-f\left(x^{*}\right)\right)=0, \eta_{i}^{*} g_{i}\left(x^{*}\right)=0, i=1, \ldots, m$, and
(iv') $\quad \tilde{Z}_{+}\left(z^{*}, x^{*}\right)^{T} \nabla_{z, x}^{2} \tilde{\mathcal{L}}\left(z^{*}, x^{*}, \mu^{*}, \eta^{*}\right) \tilde{Z}_{+}\left(z^{*}, x^{*}\right) \succ 0$,
where $\tilde{Z}_{+}\left(z^{*}, x^{*}\right)$ is a matrix whose columns form a basis for $\operatorname{null}\left(\tilde{A}_{+}\left(z^{*}, x^{*}\right)\right)$, with $\tilde{A}_{+}\left(z^{*}, x^{*}\right)$ defined as the matrix comprising the rows of

$$
\left(\begin{array}{cc}
1 & -\nabla f\left(x^{*}\right)^{T} \\
0 & A\left(x^{*}\right)
\end{array}\right)
$$

for which the associated components of the multipliers μ^{*} and η^{*} of (ii') are positive.

We now verify these conditions. For (i') to hold, we must have $z^{*} \geq f\left(x^{*}\right)$, since $g\left(x^{*}\right) \geq 0$ holds by (i).
For (ii'), the first equation reads $1=\mu^{*}$. Hence, $\mu^{*}=1$ must hold. With $\mu^{*}=1$, the second block of equations reads

$$
0=-\nabla f\left(x^{*}\right)+A\left(x^{*}\right)^{T} \eta^{*}
$$

which holds for $\eta^{*}=\lambda^{*}$ by (ii). Since $\mu^{*}=1>0$ and $\lambda^{*} \geq 0$ by (ii), (ii') holds.
Since $\mu^{*}>0$, (iii') holds if $z^{*}=f\left(x^{*}\right)$, since (iii) implies that $\eta_{i}^{*} g_{i}\left(x^{*}\right)=0, i=$ $1, \ldots, m$, if $\eta^{*}=\lambda^{*}$. In addition, since $z^{*}=f\left(x^{*}\right)$, (i') holds.
Finally, to verify (iv'), taking the derivatives gives

$$
\nabla_{z, x}^{2} \tilde{\mathcal{L}}\left(z^{*}, x^{*}, \mu^{*}, \eta^{*}\right)=\left(\begin{array}{cc}
\nabla_{x x}^{2} \tilde{\mathcal{L}}\left(z^{*}, x^{*}, \mu^{*}, \eta^{*}\right) & \nabla_{x z}^{2} \tilde{\mathcal{L}}\left(z^{*}, x^{*}, \mu^{*}, \eta^{*}\right) \\
\nabla_{z x}^{2} \tilde{\mathcal{L}}\left(z^{*}, x^{*}, \mu^{*}, \eta^{*}\right) & \nabla_{z z}^{2} \tilde{\mathcal{L}}\left(z^{*}, x^{*}, \mu^{*}, \eta^{*}\right)
\end{array}\right)=\left(\begin{array}{cc}
0 & 0 \\
0 & \nabla_{x x}^{2} \mathcal{L}\left(x^{*}, \lambda^{*}\right)
\end{array}\right)
$$

Since $\mu^{*}>0$ and $\eta^{*}=\lambda^{*}$, we obtain

$$
\tilde{A}_{+}\left(z^{*}, x^{*}\right)=\left(\begin{array}{cc}
1 & -\nabla f\left(x^{*}\right)^{T} \\
0 & A_{+}\left(x^{*}\right)
\end{array}\right)=\left(\begin{array}{cc}
1 & -\lambda_{+}^{*} T A_{+}\left(x^{*}\right) \\
0 & A_{+}\left(x^{*}\right)
\end{array}\right)
$$

Note that $\operatorname{rank}\left(\tilde{A}_{+}\left(z^{*}, x^{*}\right)\right)=\operatorname{rank}\left(A_{+}\left(x^{*}\right)\right)+1$, since the first row of $\left.\tilde{A}_{+}\left(z^{*}, x^{*}\right)\right)$ is not linearly dependent on the other rows. Hence, $\operatorname{null}\left(A_{+}\left(z^{*}, x^{*}\right)\right)$ and $\operatorname{null}\left(A_{+}\left(x^{*}\right)\right)$ have the same dimension. Since

$$
\left(\begin{array}{cc}
1 & -\lambda_{+}^{* T} A_{+}\left(x^{*}\right) \\
0 & A_{+}\left(x^{*}\right)
\end{array}\right)\binom{0}{Z_{+}\left(x^{*}\right)}=\binom{0}{0}, \quad \text { we may let } \quad \tilde{Z}_{+}\left(z^{*}, x^{*}\right)=\binom{0}{Z_{+}\left(x^{*}\right)}
$$

Then,

$$
\begin{aligned}
& \tilde{Z}_{+}\left(z^{*}, x^{*}\right)^{T} \nabla_{z, x}^{2} \tilde{\mathcal{L}}\left(z^{*}, x^{*}, \mu^{*}, \eta^{*}\right) \tilde{Z}_{+}\left(z^{*}, x^{*}\right) \\
= & \left(\begin{array}{ll}
0 & Z_{+}\left(x^{*}\right)^{T}
\end{array}\right)\left(\begin{array}{cc}
0 & 0 \\
0 & \nabla_{x x}^{2} \mathcal{L}\left(x^{*}, \lambda^{*}\right)
\end{array}\right)\binom{0}{Z_{+}\left(x^{*}\right)} \\
= & Z_{+}\left(x^{*}\right)^{T} \nabla_{x x}^{2} \mathcal{L}\left(x^{*}, \lambda^{*}\right) Z_{+}\left(x^{*}\right) \succ 0,
\end{aligned}
$$

as required, where (iv) has been used in the last step. This means that the secondorder sufficient optimality conditions hold for $\left(N L P_{2}\right)$ with $z^{*}=f\left(x^{*}\right), \mu^{*}=1$ and $\eta^{*}=\lambda^{*}$.

