SF2822 Applied nonlinear optimization, final exam Wednesday June 92010 8.00-13.00 Brief solutions

1. (a) The first-order necessary optimality conditions for $(E Q P)$ are given by $H x+c=$ 0 . As H is nonsingular, there is a unique solution given by $x^{1}=\left(\begin{array}{lll}1 & 1 & 1\end{array}\right)^{T}$.
The matrix H is not positive semidefinite, since the leading two-by-two principal submatrix is indefinite. With $d=(1-10)^{T}$, we obtain $d^{T} H d=-2$. Consequently, x^{1} does not satisfy the second-order necessary optimality conditions to $(E Q P)$.
Consequently, there is no point that satisfies the second-order necessary optimality conditions for $(E Q P)$.
(b) The first-order necessary optimality conditions for $(E Q P)$ are given by

$$
\left(\begin{array}{cc}
H & A^{T} \\
A & 0
\end{array}\right)\binom{x}{-\lambda}=\binom{-c}{b}
$$

which has unique solution $x^{2}=\left(\begin{array}{ll}0 & 3\end{array}\right)^{T}, \lambda^{2}=3$. We may for example form a matrix Z whose columns form a basis for $\operatorname{null}(A)$ as

$$
Z=\left(\begin{array}{ll}
0 & 0 \\
1 & 0 \\
0 & 1
\end{array}\right),
$$

for which $Z^{T} H Z=I$. Hence, x^{2} satisfies the second-order necessary optimality conditions.
(c) Since A has only one row, a local minimizer to $(I Q P)$ has to be a local minimizer to $(Q P)$ or a local minimizer to $(E Q P)$. Since x^{1} does not satisfy the secondorder necessary optimality conditions to $(Q P)$, it is not a local mininimizer to $(Q P)$. Hence, it is not a local minimizer to $(I Q P)$. Since x^{2} satisfies the second-order sufficient optimality conditions to $(E Q P)$, it is a local minimizer to $(E Q P)$. In addition, since $\lambda^{2}>0$, it is also a local minimizer to $(I Q P)$.
(d) Let $q(x)=\frac{1}{2} x^{T} H x+c^{T} x$. With d given as in (1a), it follows that $q\left(x^{1}+\alpha d\right)$ and $q\left(x^{1}-\alpha d\right)$ tend to minus infinity as $\alpha \rightarrow \infty$. Since we have only one constraint, at least one of $x^{1}+\alpha d$ and $x^{1}-\alpha d$ must remain feasible in (IQP) as $\alpha \rightarrow \infty$. We conclude that no global minimizer can exist.
2. No constraints are active at the initial point. Hence, the working set is empty, i.e., $\mathcal{W}=\emptyset$. Since $H=I$ and $c=0$, we obtain $p^{(0)}=-\left(H x^{(0)}+c\right)=-x^{(0)}$. The maximum steplength is given by

$$
\alpha_{\max }=\min _{i: a_{i}^{T} p^{(0)}<0} \frac{a_{i}^{T} x^{(0)}-b_{i}}{-a_{i}^{T} p^{(0)}}=\frac{2}{5},
$$

where the minimium is attained for $i=2$. Consequently, $\alpha^{(0)}=2 / 5$ so that

$$
x^{(1)}=x^{(0)}+\alpha^{(0)} p^{(0)}=\binom{5}{0}+\frac{2}{5}\binom{-5}{0}=\binom{3}{0},
$$

with $\mathcal{W}=\{2\}$. The solution to the corresponding equality-constrained quadratic progam is given by

$$
\left(\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & 2 \\
1 & 2 & 0
\end{array}\right)\left(\begin{array}{r}
p_{1}^{(1)} \\
p_{2}^{(1)} \\
-\lambda_{1}^{(2)}
\end{array}\right)=-\left(\begin{array}{l}
3 \\
0 \\
0
\end{array}\right)
$$

We obtain

$$
p^{(1)}=\left(\begin{array}{cc}
-\frac{12}{5} & \frac{6}{5}
\end{array}\right)^{T} .
$$

The maximum steplength is given by

$$
\alpha_{\max }=\min _{i: a_{i}^{T} p^{(0)}<0} \frac{a_{i}^{T} x^{(0)}-b_{i}}{-a_{i}^{T} p^{(0)}}=\frac{5}{6},
$$

where the minimium is attained for $i=1$. Consequently, $\alpha^{(1)}=5 / 6$ so that

$$
x^{(2)}=x^{(1)}+\alpha^{(1)} p^{(1)}=\binom{3}{0}+\frac{5}{6}\binom{-\frac{12}{5}}{\frac{6}{5}}=\binom{1}{1},
$$

with $\mathcal{W}=\{1,2\}$. The solution to the corresponding equality-constrained quadratic progam is given by

$$
\left(\begin{array}{llll}
1 & 0 & 1 & 2 \\
0 & 1 & 2 & 1 \\
1 & 2 & 0 & 0 \\
2 & 1 & 0 & 0
\end{array}\right)\left(\begin{array}{c}
p_{1}^{(2)} \\
p_{2}^{(2)} \\
-\lambda_{1}^{(3)} \\
-\lambda_{2}^{(3)}
\end{array}\right)=-\left(\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right) .
$$

We obtain

$$
p^{(2)}=\left(\begin{array}{ll}
0 & 0
\end{array}\right)^{T}, \quad \lambda^{(3)}=\left(\begin{array}{ll}
\frac{1}{3} & \frac{1}{3}
\end{array}\right)^{T} .
$$

As $p^{(2)}=0$ and $\lambda^{(3)} \geq 0$, the optimal solution has been found. Hence, $x^{(2)}$ is optimal.
3. If the problem is put on the form

$$
\begin{array}{ll}
\operatorname{minimize} & f(x) \\
\text { subject to } & g(x) \geq 0, \quad x \in \mathbb{R}^{2}
\end{array}
$$

we obtain

$$
\begin{aligned}
& \nabla f(x)^{T}=\left(x_{1}+x_{2}+\frac{5}{2} \quad x_{1}+x_{2}-\frac{1}{2}\right), \quad \nabla g(x)^{T}=\left(\begin{array}{cc}
x_{2} & x_{1} \\
1 & 0 \\
0 & 1
\end{array}\right), \\
& \nabla_{x x}^{2} \mathcal{L}(x, \lambda)=\left(\begin{array}{cc}
1 & 1-\lambda_{1} \\
1-\lambda_{1} & 1
\end{array}\right) .
\end{aligned}
$$

With $x^{(0)}=\left(\frac{1}{2} 2\right)^{T}$ and $\lambda_{1}^{(0)}=1$, the first QP-problem becomes

$$
\begin{array}{ll}
\operatorname{minimize} & \frac{1}{2}\left(\begin{array}{ll}
p_{1} & p_{2}
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\binom{p_{1}}{p_{2}}+\left(\begin{array}{ll}
5 & 2
\end{array}\right)\binom{p_{1}}{p_{2}} \\
\text { subject to } & \left(\begin{array}{ll}
2 & \frac{1}{2} \\
1 & 0 \\
0 & 1
\end{array}\right)\binom{p_{1}}{p_{2}} \geq\left(\begin{array}{c}
0 \\
-\frac{1}{2} \\
-2
\end{array}\right) .
\end{array}
$$

The optimal solution of the QP-problem is given by the feasible point which is closest, in 2-norm, to $\left(\begin{array}{ll}-5 & -2\end{array}\right)^{T}$, i.e., $p^{(0)}=\left(\frac{3}{17}-\frac{12}{17}\right)^{T}$ with Lagrange multipliers $\lambda^{(1)}=\left(\begin{array}{lll}\frac{44}{17} & 0 & 0\end{array}\right)^{T}$. Thus, we have $\lambda^{(1)}$, and $x^{(1)}$ is given by $x^{(1)}=x^{(0)}+p^{(0)}=\left(\frac{23}{34}\right.$ $\left.\frac{22}{17}\right)^{T}$.
4. (See the course material.)
5. (a) By adding an additional variable z, we may rewrite (P) as the nonlinear program

$$
\begin{array}{ll}
\operatorname{minimize} & z \\
\text { subject to } & z-f_{i}(x) \geq 0, \quad i=1, \ldots, n \tag{NLP}\\
& x \in \mathbb{R}^{n}, z \in \mathbb{R}
\end{array}
$$

As $f_{i}, i=1, \ldots, n$, are convex on $\mathbb{R}^{n},(N L P)$ is a convex problem. Consequently, a local minimizer to $(N L P)$ is also a global minimzier.
For a given positive μ, a barrier transformation of the constraints $z-f_{i}(x) \geq 0$, $i=1, \ldots, n$, gives the barrier function $B_{\mu}(z, x)$ on the form

$$
B_{\mu}(z, x)=z-\mu \sum_{i=1}^{n} \ln \left(z-f_{i}(x)\right)
$$

Minimizing $B_{\mu}(z, x)$ gives $\left(N L P_{\mu}\right)$, as required.
(b) The gradient of $B_{\mu}(z, x)$ is given by

$$
\nabla B_{\mu}(z, x)=\binom{1-\mu \sum_{i=1}^{n} \frac{1}{z-f_{i}(x)}}{\mu \sum_{i=1}^{n} \frac{1}{z-f_{i}(x)} \nabla f_{i}(x)}
$$

The first-order optimality conditions for minimizing $B_{\mu}(z, x)$ are given by $\nabla B_{\mu}(z, x)=$ 0 . By letting $\lambda_{i}=1 /\left(z-f_{i}(x)\right), i=1, \ldots, n$, we obtain the primal-dual nonlinear equations as

$$
1-\sum_{i=1}^{n} \lambda_{i}=0
$$

$$
\begin{aligned}
\sum_{i=1}^{n} \nabla f_{i}(x) \lambda_{i} & =0, \\
\left(z-f_{i}(x)\right) \lambda_{i} & =\mu, \quad i=1, \ldots, n .
\end{aligned}
$$

As $\left(N L P_{\mu}\right)$ is a convex optimization problem, $B_{\mu}(z, x)$ is a convex function for z, x such that $z-f_{i}(x)>0, i=1, \ldots, n$. To see this directly, we may form

$$
\nabla^{2} B_{\mu}(z, x)=\left(\begin{array}{cc}
0 & 0 \\
0 & \mu \sum_{i=1}^{n} \frac{1}{\left(z-f_{i}(x)\right)^{2}} \nabla f_{i}(x) \nabla f_{i}(x)^{T}
\end{array}\right),
$$

which is positive semidefinite for z, x such that $z-f_{i}(x)>0, i=1, \ldots, n$. Consequently, a solution to $\nabla B_{\mu}(z, x)=0$ corresponds to a global minimizer of $\left(N L P_{\mu}\right)$. Finally, the primal-dual nonlinear equations are equivalent to $\nabla B_{\mu}(z, x)=0$.

