SF2822 Applied nonlinear optimization, final exam Saturday June 22012 9.00-14.00
 Brief solutions

1. As $g_{2}\left(x^{*}\right)>0$ we must have $g_{2}(x) \geq 0$.

Since $g_{1}\left(x^{*}\right)=0, g_{3}\left(x^{*}\right)=0$, with $\nabla g_{1}\left(x^{*}\right)$ and $\nabla g_{3}\left(x^{*}\right)$ linearly independent, it follows that x^{*} is a regular point. Hence, the first-order necessary optimality conditions must hold. We therefore try to find λ_{1} and λ_{3} such that

$$
\left(\begin{array}{r}
-1 \\
2 \\
-1
\end{array}\right)=\left(\begin{array}{r}
1 \\
0 \\
-1
\end{array}\right) \lambda_{1}+\left(\begin{array}{r}
0 \\
1 \\
-1
\end{array}\right) \lambda_{3} .
$$

There is a solution for $\lambda_{1}=-1$ and $\lambda_{3}=2$. Since $\lambda_{1}<0$ and $\lambda_{3}>0$, we must have $g_{1}(x) \leq 0$ and $g_{3}(x) \geq 0$ for the first-order necessary optimality conditions to hold.
We now investigate whether this choice gives a local minimizer. The Jacobian of the active constraints at x^{*} is given by

$$
\left(\begin{array}{lll}
1 & 0 & -1 \\
0 & 1 & -1
\end{array}\right) .
$$

As the first two columns form an invertible matrix, we may for example obtain Z from

$$
Z=\binom{-\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)_{1}^{-1}\binom{-1}{-1}}{1}=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) .
$$

Hence,

$$
\begin{aligned}
Z^{T}\left(\nabla^{2} f\left(x^{*}\right)-\lambda_{1} \nabla^{2} g_{1}\left(x^{*}\right)-\lambda_{3} \nabla^{2} g_{3}\left(x^{*}\right)\right) Z & =\left(\begin{array}{lll}
1 & 1 & 1
\end{array}\right)\left(\begin{array}{rrr}
-4 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 2
\end{array}\right)\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) \\
& =-1,
\end{aligned}
$$

which is not a positive semidefinite matrix. Therefore, x^{*} is a regular point at which the second-order necessary optimality conditions do not hold. Consequently, x^{*} is not a local minimizer.
We conclude that it is not possible to replace "?" by " \leq " or " \geq " so that x^{*} becomes a local minimizer to $(N L P)$.
2. The iterations are illustrated in the figure below.

In the first iteration, the search direction points towards the minimizer with constraint 3 active, $(50)^{T}$, but the step is limited by constraint 2 at $(51)^{T}$. Hence, the next iterate is $(51)^{T}$ and constraint 2 is added.
In the second iteration, the search direction is zero so that the multipliers are evaluated. We have $\lambda_{2}=1, \lambda_{3}=-5$. Constraint 3 has a negative multiplier, so that the next iterate remains (51$)^{T}$ and constraint 3 is deleted.
In the third iteration, the search direction points towards the minimizer with constraint 2 active, $(01)^{T}$, but the step is limited by constraint 5 at $(31)^{T}$. Hence, the next iterate is $(31)^{T}$ and constraint 5 is added.
In the fourth iteration, the search direction is zero so that the multipliers are evaluated. We have $\lambda_{2}=-5, \lambda_{5}=3$. Constraint 2 has a negative multiplier, so that the next iterate remains (31) $)^{T}$ and constraint 2 is deleted.
In the fifth iteration, the search direction points towards the minimizer with constraint 5 active, $(12)^{T}$, which is feasible. The multiplier of constraint 5 is positive, $\lambda_{5}=1$, so the optimal solution has been found.
3. We have

$$
\begin{array}{rlrl}
f(x) & =4\left(x_{1}-2\right)^{2}+\left(x_{2}-1\right)^{2} & g(x) & =1-x_{1}^{2}-x_{2}^{2} \geq 0, \\
\nabla f(x) & =\binom{8\left(x_{1}-2\right)}{2\left(x_{2}-1\right)}, & \nabla g(x) & =\binom{-2 x_{1}}{-2 x_{2}}, \\
\nabla^{2} f(x) & =\left(\begin{array}{ll}
8 & 0 \\
0 & 2
\end{array}\right), & \nabla^{2} g(x) & =\left(\begin{array}{rr}
-2 & 0 \\
0 & -2
\end{array}\right) .
\end{array}
$$

The first QP-subproblem becomes

$$
\begin{array}{ll}
\text { minimize } & \frac{1}{2} p^{T} \nabla_{x x}^{2} \mathcal{L}\left(x^{(0)}, \lambda^{(0)}\right) p+\nabla f\left(x^{(0)}\right)^{T} p \\
\text { subject to } & \nabla g\left(x^{(0)}\right)^{T} p \geq-g\left(x^{(0)},\right.
\end{array}
$$

Insertion of numerical values gives

$$
\begin{array}{ll}
\text { minimize } & 4 p_{1}^{2}+p_{2}^{2} \\
\text { subject to } & -4 p_{1}-2 p_{2} \geq 4
\end{array}
$$

We now utilize the fact that the problem is of dimension two with only one constraint. The constraint must be active, since the unconstrained minimizer $p=0$ is infeasible. Hence, we may let $p_{1}=-1-p_{2} / 2$ and minimize

$$
4\left(1+\frac{p_{2}}{2}\right)^{2}+p_{2}^{2}
$$

Setting the derivative to zero gives

$$
0=4\left(1+\frac{p_{2}}{2}\right)+2 p_{2}=4+4 p_{2}
$$

Hence, $p_{2}=-1$, which gives $p_{1}=-1 / 2$. Evaluating the gradient at the optimal point of the quadratic program gives

$$
\binom{-4}{-2}=\binom{-4}{-2} \lambda
$$

so that $\lambda=1$. Consequently, we obtain

$$
x^{(1)}=\binom{2}{1}+\binom{-\frac{1}{2}}{-1}=\binom{\frac{3}{2}}{0}, \quad \lambda^{(1)}=1
$$

4. (See the course material.)
5. (a) The Hessian of the objective function is given by

$$
\nabla^{2} f(x)=\left(\begin{array}{cc}
\frac{2 x_{2}^{2}}{x_{1}^{3}} & -\frac{2 x_{2}}{x_{1}^{2}} \\
-\frac{2 x_{2}}{x_{1}^{2}} & \frac{2}{x_{1}}
\end{array}\right)
$$

If we let $A=2 / x_{1}, B=-2 x_{2} / x_{1}^{2}$ and $C=2 x_{2}^{2} / x_{1}^{3}$ we obtain $A>0$ and $C-B^{2} / A=0$ if $x_{1}>0$. Hence, Hint 2 shows that $\nabla^{2} f(x) \succeq 0$ for $x_{1}>0$. Thus, f is convex on the convex feasible region, so that $(N L P)$ is a convex problem.
(b) Problem $(N L P)$ is equivalent to $\left(N L P^{\prime}\right)$ given by

$$
\begin{array}{lll}
& \text { minimize } & x_{3} \\
\left(N L P^{\prime}\right) & \text { subject to } \quad & x_{3} \geq \frac{x_{2}^{2}}{x_{1}}, \\
& x \in F,
\end{array}
$$

since $x_{3}=x_{2}^{2} / x_{1}$ must hold at any optimal solution. For $x_{1}>0$ we obtain

$$
x_{3} \geq \frac{x_{2}^{2}}{x_{1}} \quad \Leftrightarrow x_{3}-\frac{x_{2}^{2}}{x_{1}} \geq 0 \quad \Leftrightarrow\left(\begin{array}{ll}
x_{1} & x_{2} \\
x_{2} & x_{3}
\end{array}\right) \succeq 0
$$

where Hint 2 has been used in the last step with $A=x_{1}, B=x_{2}$ and $C=x_{3}$. Hence, $\left(N L P^{\prime}\right)$ is equivalent to the semidefinite program

$$
\begin{array}{ll}
\operatorname{minimize} & x_{3} \\
\text { subject to } & \left(\begin{array}{ll}
x_{1} & x_{2} \\
x_{2} & x_{3}
\end{array}\right) \succeq 0
\end{array}
$$

$$
x \in F
$$

