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Brief solutions

1. (a) As g(x∗) = 0, the constraint is active, and as ∇g(x∗) is nonzero, it holds that
x∗ is a regular point. Hence, for x∗ to be a local minimizer to (NLP ), the
first-order necessary optimality conditions must hold. Hence, there must exist
a nonnegative λ∗ such that ∇f(x∗) = ∇g(x∗)λ∗, i.e.,
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λ∗.

There is no such λ∗. Hence, x∗ is not a local minimizer to (NLP ).

(b) The first-order optimality conditions
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λ∗,

are only violated in the last component if λ∗ = 1. Hence, for this value of λ∗,
we have
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 .

Consequently, if we add a second constraint in the form of the bound-constraint
−x3 ≥ −x∗3 to (NLP ), the first-order optimality conditions are satisfied for
λ∗1 = 1, λ∗2 = 1.
In order to verify if x∗ is a local minimizer, we now examine the second-order
optimality conditions. We obtain

∇2L(x∗, λ∗) = ∇2f(x∗)−∇2g(x∗)λ∗1

=


−1 0 0

0 1 0
0 0 1

−

−5 0 0

0 0 0
0 0 −3

 =


4 0 0
0 1 0
0 0 4

 .

As we have strict complementarity, we now want to check the definiteness of
the reduced Hessian of the Lagrangian with respect to the active constraint
gradients, given by

A(x∗) =

(
1 1 1
0 0 −1

)
.
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However, ∇2L(x∗, λ∗) is a diagonal matrix with positive diagonal elements,
hence positive definite. Thus, the reduced Hessian is also positive definite.
We conclude that the second-order sufficient optimality conditions hold at x∗
together with λ∗. Hence, x∗ is a local minimizer to the problem where the
bound-constraint −x3 ≥ −x∗3 has been added.

2. (a) The iterations are illustrated in the figure below.

In the first iteration, the search direction points towards the minimizer with
constraint 2 active, (0 4)T , and the step is not limited. Hence, the next iterate is
(0 4)T at which the multiplier of constraint 2 is negative. −4. Thus, constraint
2 is deleted.
In the second iteration, the search direction points towards the unconstrained
minimizer, the origin. The step is limited by constraint 3 at (0 2)T . Hence, the
next iterate is (0 2)T and constraint 3 is added.
In the third iteration, the search direction points towards the minimizer with
constraint 3 active, (1 1)T , and the step is not limited. Hence, the next iterate
is (1 1)T at which the multiplier of constraint 3 is positive. 1. Thus, the optimal
solution has been found.

(b) The iterations are illustrated in the figure below.
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In the first iteration, the search direction points towards the unconstrained
minimizer, the origin. The step is limited by constraint 3 at (2/3 4/3)T . Hence,
the next iterate is (2/3 4/3)T with constraint 3 active.
In the second iteration, the search direction points towards the minimizer with
constraint 3 active, (1 1)T , and the step is not limited. Hence, the next iterate
is (1 1)T at which the multiplier of constraint 3 is positive. 1. Thus, the optimal
solution has been found.

3. (a) We have

f(x) = 4(x1 − 2)2 + (x2 − 1)2 g(x) = 1− x2
1 − x2

2 ≥ 0,

∇f(x) =

(
8(x1 − 2)
2(x2 − 1)

)
, ∇g(x) =

(
−2x1

−2x2

)
,

∇2f(x) =

(
8 0
0 2

)
, ∇2g(x) =

(
−2 0

0 −2

)
.

Since g(x(0)) > 0, we need not introduce slack variables. This could be done,
but we choose not to do so. The primal-dual nonlinear equation to be solved
is then

∇f(x)−∇g(x)λ = 0,

g(x)λ− µ = 0.

The Newton step ∆x(0), ∆λ(0) is given by(
∇2

xxL(x(0), λ(0)) ∇g(x(0))
λ(0)∇g(x(0))T −g(x(0))

)(
∆x(0)

−∆λ(0)

)
= −

(
∇f(x(0))−∇g(x(0))λ(0)

g(x(0))λ(0) − µ(0)

)
.

Insertion of numerical values gives

f(x(0) = 17, g(x(0)) = 1,

∇f(x(0)) =

(
−16
−2

)
, ∇g(x(0) =

(
0
0

)
,

∇2f(x(0) =

(
8 0
0 2

)
, ∇2g(x(0) =

(
−2 0

0 −2

)
,

∇2L(x(0), λ(0)) =

(
10 0
0 4

)
,

so that the linear equations become
10 0 0
0 4 0
0 0 −1




∆x
(0)
1

∆x
(0)
2

−∆λ(0)

 =


16
2
0

 .

(b) We may ensure that the iterates x(1) and λ(1) remain interior by selecting a
steplength α(0) such that x(1) = x(0) + α(0)∆x(0) and λ(1) = λ(0) + α(0)∆λ(0)

such that g(x(1)) > 0 and λ(1) > 0.
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4. (See the course material.)

5. (a) Let x(k), λ(k), be a given iterate. Since (NLP ) has at least one feasible point,
there is an x̄ such that gi(x̄) ≥ 0, i = 1, . . . ,m.
If gi is concave on IRn, it holds that

0 ≤ gi(x̄) ≤ gi(x(k)) +∇gi(x(k))T(x̄− x(k)).

Hence, if all the constraint functions are concave, it follows that

gi(x(k)) +∇gi(x(k))T(x̄− x(k)) ≥ 0, i = 1, . . . ,m.

As the constraints of the quadratic programming subproblem are given by

gi(x(k)) +∇gi(x(k))T∆x ≥ 0, i = 1, . . . ,m,

it follows that ∆x = x̄−x(k) is feasible to the quadratic programming subprob-
lem.

(b) The requirement g1(x) ≥ 0 gives x1 ≥ 1 or x1 ≤ −1. Hence, taking g2 and g3

into account, it follows that the feasible region of (NLP ) is given by 1 ≤ x ≤ 2.
Thus, (NLP ) has feasible points.
Differentiation gives the cconstraints for the first quadratic programming sub-
problem as

2x(0)

1
−1

∆x ≥ −


x(0)2 − 1

x(0)

−x(0) + 2

 .

Insertion of numerical values gives

0 ≥ 1,

∆x ≥ 0,

∆x ≤ 2,

where the first equation is not compatible, so that there is no feasible solution
to the first quadratic programming subproblem.
(For this small problem it is easy to detect that the constraints can be formu-
lated in a much simpler way, 1 ≤ x ≤ 2. In general, we cannot expect to do so
for a large-scale problem. This particular example is very special, but an SQP
solver for nonconvex problems must be able to handle infeasible subproblems
somehow. There are various techniques for doing so.)


