SF2822 Applied nonlinear optimization, final exam Monday May 202013 8.00-13.00
 Brief solutions

1. (a) If p is a nonzero vector in \mathbb{R}^{4}, then

$$
p^{T} H p=p^{T}\left(I+e e^{T}\right) p=p^{T} p+\left(p^{T} e\right)^{2} \geq p^{T} p>0 .
$$

Hence, H is positive definite.
(b) We may write $A=(N B)$, where $B=I$ and $N=-e$, where e is the vector of ones. Then, a matrix Z whose columns form a basis for the nullspace of A is given by

$$
Z=\binom{I}{-B^{-1} N}=\binom{1}{e}=\left(\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right) .
$$

(c) The step to the minimizer is given by $Z p_{Z}$, where

$$
Z^{T} H Z p_{Z}=-Z^{T}(H \bar{x}+c) .
$$

Insertion of numerical values gives $20 p_{Z}=20$, i.e., $p_{Z}=1$. Hence the optimal x is given by

$$
x=\bar{x}+Z p_{Z}=\left(\begin{array}{l}
0 \\
1 \\
1 \\
1
\end{array}\right) .
$$

The Lagrange multipliers are then given by $H x+c=A^{T} \lambda$, i.e.,

$$
\left(\begin{array}{r}
-2 \\
-1 \\
-1 \\
4
\end{array}\right)=\left(\begin{array}{rrr}
-1 & -1 & -1 \\
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
\lambda_{1} \\
\lambda_{2} \\
\lambda_{3}
\end{array}\right),
$$

i.e., $\lambda=\left(\begin{array}{lll}-1 & -1 & 4\end{array}\right)^{T}$.
(d) Since H is positive definite, the optimal solution x is unique. As A has full row rank, the Lagrange multiplier vector λ is unique. Since no component of λ is zero, no constraint can be omitted without x being changed.
2. Constraint 3 is in the working set at the initial point, i.e., $\mathcal{W}=\{3\}$. With $H=I$ and $c=0$ we obtain

$$
\left(\begin{array}{cc}
H & A_{\mathcal{W}}^{T} \\
A_{\mathcal{W}} & 0
\end{array}\right)\binom{p^{(0)}}{-\lambda_{\mathcal{W}}^{(0)}}=-\binom{H x^{(0)}+c}{0} .
$$

Insertion of numeric values gives

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 1 & 0
\end{array}\right)\left(\begin{array}{r}
p_{1}^{(0)} \\
p_{2}^{(0)} \\
-\lambda_{3}^{(1)}
\end{array}\right)=-\left(\begin{array}{l}
8 \\
0 \\
0
\end{array}\right)
$$

We obtain

$$
p^{(0)}=\left(\begin{array}{cc}
-8 & 0
\end{array}\right)^{T}, \quad \lambda^{(1)}=\left(\begin{array}{lll}
0 & 0 & 0
\end{array}\right)^{T}
$$

The maximum steplength is given by

$$
\alpha_{\max }=\min _{i: a_{i}^{T} p^{(0)}<0} \frac{a_{i}^{T} x^{(0)}-b_{i}}{-a_{i}^{T} p^{(0)}}=\frac{1}{4}
$$

where the minimium is attained for $i=1$. Consequently, $\alpha^{(0)}=1 / 4$ so that

$$
x^{(1)}=x^{(0)}+\alpha^{(0)} p^{(0)}=\binom{8}{0}+\frac{1}{4}\binom{-8}{0}=\binom{6}{0},
$$

with $\mathcal{W}=\{1,3\}$. The solution to the corresponding equality-constrained quadratic progam is given by

$$
\left(\begin{array}{llll}
1 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 \\
1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right)\left(\begin{array}{r}
p_{1}^{(1)} \\
p_{2}^{(1)} \\
-\lambda_{1}^{(2)} \\
-\lambda_{3}^{(2)}
\end{array}\right)=-\left(\begin{array}{l}
6 \\
0 \\
0 \\
0
\end{array}\right)
$$

We obtain

$$
p^{(1)}=\left(\begin{array}{ll}
0 & 0
\end{array}\right)^{T}, \quad \lambda^{(2)}=\left(\begin{array}{lll}
6 & 0 & -6
\end{array}\right)^{T} .
$$

As $p^{(1)}=0$, it follows that $x^{(2)}=x^{(1)}$ and the corresponding equality-constrained problem has been solved. However, since $\lambda_{3}^{(2)}<0$, constraint 3 is deleted so that $\mathcal{W}=\{1\}$. The solution to the corresponding equality-constrained quadratic progam is given by

$$
\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1 \\
1 & 1 & 0
\end{array}\right)\left(\begin{array}{c}
p_{1}^{(2)} \\
p_{2}^{(2)} \\
-\lambda_{1}^{(3)}
\end{array}\right)=-\left(\begin{array}{l}
6 \\
0 \\
0
\end{array}\right)
$$

We obtain

$$
p^{(2)}=\left(\begin{array}{ll}
-3 & 3
\end{array}\right)^{T}, \quad \lambda^{(3)}=\left(\begin{array}{lll}
3 & 0 & 0
\end{array}\right)^{T} .
$$

The maximum steplength is given by

$$
\alpha_{\max }=\min _{i: a_{i}^{T} p^{(2)}<0} \frac{a_{i}^{T} x^{(2)}-b_{i}}{-a_{i}^{T} p^{(2)}}=\frac{4}{3}
$$

where the minimium is attained for $i=2$. Since $\alpha_{\max }>1$, we let $\alpha^{(2)}=1$ so that

$$
x^{(3)}=x^{(2)}+p^{(2)}=\binom{6}{0}+\binom{-3}{3}=\binom{3}{3} .
$$

Since $\lambda^{(3)} \geq 0$, the optimal solution has been found.
3. (a) The problem $(Q P)$ is a convex quadratic program. The primal part of the trajectory is obtained as minimizer to the barrier-transformed problem

$$
\left(P_{\mu}\right) \quad \min \quad \frac{1}{2} x_{1}^{2}+\frac{1}{2} x_{2}^{2}-\mu \ln \left(x_{1}-1\right)
$$

under the implicit condition that $x_{1}+1>0$. The first-order optimality conditions of $\left(P_{\mu}\right)$ gives

$$
\begin{aligned}
x_{1}(\mu)-\frac{\mu}{x_{1}(\mu)-1} & =0 \\
x_{2}(\mu) & =0
\end{aligned}
$$

Since $(Q P)$ is a convex problem, $\left(P_{\mu}\right)$ is an unconstrained convex problem, taking into account the implicit constraint $x_{1}-1>0$. Therefore, the firstorder necessary optimality conditions are sufficient for global optimality.
The first-order optimality conditions give $x_{2}(\mu)=0$, and $x_{1}(\mu)$ is given by

$$
x_{1}^{2}(\mu)-x_{1}(\mu)-\mu=0
$$

i.e.,

$$
x_{1}(\mu)=\frac{1}{2}+\sqrt{\frac{1}{4}+\mu}
$$

where the plus sign has been chosen for the square root to enforce $x_{1}(\mu)-1>0$. The dual part of the trajectory, i.e. $\lambda(\mu)$, is normally given by $\lambda_{i}(\mu)=\mu / g_{i}(x(\mu))$, $i=1, \ldots, m$. Here we only have one constraint, so

$$
\lambda(\mu)=\frac{\mu}{x_{1}(\mu)-1}=\frac{\mu}{-\frac{1}{2}+\sqrt{\frac{1}{4}+\mu}}=\frac{1}{2}+\sqrt{\frac{1}{4}+\mu}
$$

(b) As $\mu \rightarrow 0$ it follows that $x(\mu) \rightarrow\left(\begin{array}{ll}1 & 0\end{array}\right)^{T}$ and $\lambda(\mu) \rightarrow 1$. Let $x^{*}=\left(\begin{array}{ll}1 & 0\end{array}\right)^{T}$ and $\lambda^{*}=1$. Then x^{*} and λ^{*} satisfy the first-order optimality conditions of $(Q P)$. Since $(Q P)$ is a convex problem, this is sufficient for global optimality of $(Q P)$.
(c) We have

$$
\left\|x(\mu)-x^{*}\right\|_{2}=-\frac{1}{2}+\sqrt{\frac{1}{4}+\mu}=-\frac{1}{2}+\frac{1}{2} \sqrt{1+4 \mu}=\mu+o(\mu)
$$

This is as expected. We would expect $\left\|x(\mu)-x^{*}\right\|_{2}$ to be of the order μ near an optimal solution where regularity holds.
4. (a) The point $x^{(0)}$ is not feasible, as $g_{2}\left(x^{(0)}\right)<0$. Hence, it cannot be a local minimizer.
(b) The QP subproblem becomes

$$
\begin{array}{ll}
\text { minimize } & \frac{1}{2} p^{T} \nabla_{x x}^{2} \mathcal{L}\left(x^{(0)}, \lambda^{(0)}\right) p+\nabla f\left(x^{(0)}\right)^{T} p \\
\text { subject to } & \nabla g_{i}\left(x^{(0)}\right)^{T} p \geq-g_{i}\left(x^{(0)}\right), \quad i=1,2,3 .
\end{array}
$$

Insertion of numerical values gives

$$
\begin{array}{ll}
\min & \frac{1}{2} p_{1}^{2}+\frac{1}{2} p_{2}^{2} \\
\text { subject to } & p_{1}+p_{2} \geq-2, \\
& p_{1} \geq 1, \\
& p_{2} \geq-1 .
\end{array}
$$

If we let $p^{(0)}$ denote the optimal solution of the QP subproblem, we obtain $x^{(1)}=$ $x^{(0)}+p^{(0)}$. We obtain $\lambda^{(1)}$ as the Lagrange multipliers of the QP subproblem. The quadratic program is convex, and the optimal solution is given by $p^{(0)}=$ $(10)^{T}$, so that $x^{(2)}=x^{(0)}+p^{(0)}=\left(\begin{array}{l}10\end{array}\right)^{T}$. The Lagrange multiplier of the quadratic program is given by $\lambda^{(1)}=(01)^{T}$.
5. (See the course material.)

