

KTH Mathematics

SF2822 Applied nonlinear optimization, final exam Monday May 20 2013 8.00–13.00 Brief solutions

1. (a) If p is a nonzero vector in \mathbb{R}^4 , then

$$p^{T}Hp = p^{T}(I + ee^{T})p = p^{T}p + (p^{T}e)^{2} \ge p^{T}p > 0.$$

Hence, H is positive definite.

(b) We may write A = (N B), where B = I and N = -e, where e is the vector of ones. Then, a matrix Z whose columns form a basis for the nullspace of A is given by

$$Z = \begin{pmatrix} I \\ -B^{-1}N \end{pmatrix} = \begin{pmatrix} 1 \\ e \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}.$$

(c) The step to the minimizer is given by Zp_Z , where

$$Z^T H Z p_Z = -Z^T (H\bar{x} + c).$$

Insertion of numerical values gives $20p_Z = 20$, i.e., $p_Z = 1$. Hence the optimal x is given by

$$x = \bar{x} + Zp_Z = \begin{pmatrix} 0\\1\\1\\1\\1 \end{pmatrix}.$$

The Lagrange multipliers are then given by $Hx + c = A^T \lambda$, i.e.,

$$\begin{pmatrix} -2\\ -1\\ -1\\ 4 \end{pmatrix} = \begin{pmatrix} -1 & -1 & -1\\ 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \lambda_1\\ \lambda_2\\ \lambda_3 \end{pmatrix},$$

i.e., $\lambda = (-1 \ -1 \ 4)^T$.

- (d) Since H is positive definite, the optimal solution x is unique. As A has full row rank, the Lagrange multiplier vector λ is unique. Since no component of λ is zero, no constraint can be omitted without x being changed.
- 2. Constraint 3 is in the working set at the initial point, i.e., $\mathcal{W} = \{3\}$. With H = I and c = 0 we obtain

$$\begin{pmatrix} H & A_{\mathcal{W}}^T \\ A_{\mathcal{W}} & 0 \end{pmatrix} \begin{pmatrix} p^{(0)} \\ -\lambda_{\mathcal{W}}^{(0)} \end{pmatrix} = -\begin{pmatrix} Hx^{(0)} + c \\ 0 \end{pmatrix}.$$

Insertion of numeric values gives

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} p_1^{(0)} \\ p_2^{(0)} \\ -\lambda_3^{(1)} \end{pmatrix} = - \begin{pmatrix} 8 \\ 0 \\ 0 \end{pmatrix}$$

We obtain

$$p^{(0)} = \begin{pmatrix} -8 & 0 \end{pmatrix}^T, \quad \lambda^{(1)} = \begin{pmatrix} 0 & 0 & 0 \end{pmatrix}^T.$$

The maximum steplength is given by

$$\alpha_{\max} = \min_{i:a_i^T p^{(0)} < 0} \frac{a_i^T x^{(0)} - b_i}{-a_i^T p^{(0)}} = \frac{1}{4}$$

where the minimum is attained for i = 1. Consequently, $\alpha^{(0)} = 1/4$ so that

$$x^{(1)} = x^{(0)} + \alpha^{(0)} p^{(0)} = \begin{pmatrix} 8\\0 \end{pmatrix} + \frac{1}{4} \begin{pmatrix} -8\\0 \end{pmatrix} = \begin{pmatrix} 6\\0 \end{pmatrix},$$

with $\mathcal{W} = \{1, 3\}$. The solution to the corresponding equality-constrained quadratic program is given by

$$\begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} p_1^{(1)} \\ p_2^{(1)} \\ -\lambda_1^{(2)} \\ -\lambda_3^{(2)} \end{pmatrix} = - \begin{pmatrix} 6 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}.$$

We obtain

$$p^{(1)} = \begin{pmatrix} 0 & 0 \end{pmatrix}^T, \quad \lambda^{(2)} = \begin{pmatrix} 6 & 0 & -6 \end{pmatrix}^T.$$

As $p^{(1)} = 0$, it follows that $x^{(2)} = x^{(1)}$ and the corresponding equality-constrained problem has been solved. However, since $\lambda_3^{(2)} < 0$, constraint 3 is deleted so that $\mathcal{W} = \{1\}$. The solution to the corresponding equality-constrained quadratic progam is given by

$$\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} p_1^{(2)} \\ p_2^{(2)} \\ -\lambda_1^{(3)} \end{pmatrix} = - \begin{pmatrix} 6 \\ 0 \\ 0 \end{pmatrix}.$$

We obtain

$$p^{(2)} = \begin{pmatrix} -3 & 3 \end{pmatrix}^T, \quad \lambda^{(3)} = \begin{pmatrix} 3 & 0 & 0 \end{pmatrix}^T.$$

The maximum steplength is given by

$$\alpha_{\max} = \min_{i:a_i^T p^{(2)} < 0} \frac{a_i^T x^{(2)} - b_i}{-a_i^T p^{(2)}} = \frac{4}{3},$$

where the minimium is attained for i = 2. Since $\alpha_{\max} > 1$, we let $\alpha^{(2)} = 1$ so that

$$x^{(3)} = x^{(2)} + p^{(2)} = \begin{pmatrix} 6\\ 0 \end{pmatrix} + \begin{pmatrix} -3\\ 3 \end{pmatrix} = \begin{pmatrix} 3\\ 3 \end{pmatrix}$$

Since $\lambda^{(3)} \ge 0$, the optimal solution has been found.

3. (a) The problem (QP) is a convex quadratic program. The primal part of the trajectory is obtained as minimizer to the barrier-transformed problem

$$(P_{\mu})$$
 min $\frac{1}{2}x_1^2 + \frac{1}{2}x_2^2 - \mu \ln(x_1 - 1)$

under the implicit condition that $x_1 + 1 > 0$. The first-order optimality conditions of (P_{μ}) gives

$$x_1(\mu) - \frac{\mu}{x_1(\mu) - 1} = 0,$$

 $x_2(\mu) = 0.$

Since (QP) is a convex problem, (P_{μ}) is an unconstrained convex problem, taking into account the implicit constraint $x_1 - 1 > 0$. Therefore, the firstorder necessary optimality conditions are sufficient for global optimality.

The first-order optimality conditions give $x_2(\mu) = 0$, and $x_1(\mu)$ is given by

$$x_1^2(\mu) - x_1(\mu) - \mu = 0,$$

i.e.,

$$x_1(\mu) = \frac{1}{2} + \sqrt{\frac{1}{4} + \mu},$$

where the plus sign has been chosen for the square root to enforce $x_1(\mu) - 1 > 0$. The dual part of the trajectory, i.e. $\lambda(\mu)$, is normally given by $\lambda_i(\mu) = \mu/g_i(x(\mu))$, $i = 1, \ldots, m$. Here we only have one constraint, so

$$\lambda(\mu) = \frac{\mu}{x_1(\mu) - 1} = \frac{\mu}{-\frac{1}{2} + \sqrt{\frac{1}{4} + \mu}} = \frac{1}{2} + \sqrt{\frac{1}{4} + \mu}$$

- (b) As $\mu \to 0$ it follows that $x(\mu) \to (1 \ 0)^T$ and $\lambda(\mu) \to 1$. Let $x^* = (1 \ 0)^T$ and $\lambda^* = 1$. Then x^* and λ^* satisfy the first-order optimality conditions of (QP). Since (QP) is a convex problem, this is sufficient for global optimality of (QP).
- (c) We have

$$||x(\mu) - x^*||_2 = -\frac{1}{2} + \sqrt{\frac{1}{4} + \mu} = -\frac{1}{2} + \frac{1}{2}\sqrt{1 + 4\mu} = \mu + o(\mu).$$

This is as expected. We would expect $||x(\mu) - x^*||_2$ to be of the order μ near an optimal solution where regularity holds.

4. (a) The point $x^{(0)}$ is not feasible, as $g_2(x^{(0)}) < 0$. Hence, it cannot be a local minimizer.

(b) The QP subproblem becomes

minimize
$$\frac{1}{2}p^T \nabla^2_{xx} \mathcal{L}(x^{(0)}, \lambda^{(0)})p + \nabla f(x^{(0)})^T p$$

subject to $\nabla g_i(x^{(0)})^T p \ge -g_i(x^{(0)}), \quad i = 1, 2, 3.$

Insertion of numerical values gives

min
$$\frac{1}{2}p_1^2 + \frac{1}{2}p_2^2$$

subject to $p_1 + p_2 \ge -2$,
 $p_1 \ge 1$,
 $p_2 \ge -1$.

If we let $p^{(0)}$ denote the optimal solution of the QP subproblem, we obtain $x^{(1)} = x^{(0)} + p^{(0)}$. We obtain $\lambda^{(1)}$ as the Lagrange multipliers of the QP subproblem. The quadratic program is convex, and the optimal solution is given by $p^{(0)} = (1 \ 0)^T$, so that $x^{(2)} = x^{(0)} + p^{(0)} = (1 \ 0)^T$. The Lagrange multiplier of the quadratic program is given by $\lambda^{(1)} = (0 \ 1)^T$.

5. (See the course material.)