1. (a) Both constraints are active at x^{*}. The first-order necessary optimality conditions then require the existence of λ_{1}^{*} and λ_{2}^{*}, with $\lambda_{2}^{*} \geq 0$, such that

$$
\left(\begin{array}{r}
-1 \\
-2 \\
0
\end{array}\right)=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) \lambda_{1}^{*}+\left(\begin{array}{r}
-1 \\
1 \\
0
\end{array}\right) \lambda_{2}^{*} .
$$

There is a unique solution with $\lambda_{1}^{*}=-3$ and $\lambda_{2}^{*}=1$, so that x^{*} satisfies the first-order necessary optimality conditions together with λ^{*}.
(b) Both Lagrange multipliers are nonzero, so that strict complementarity holds. A matrix $Z_{+}\left(x^{*}\right)$ whose columns form a basis for the nullspace of the matrix formed of the constraint gradients of the constraints with nonzero Lagrange multipliers, evaluated at x^{*}, is given by $Z_{+}\left(x^{*}\right)=\left(\begin{array}{lll}0 & 0 & 1\end{array}\right)^{T}$. In addition to the first-order necessary optimality conditions, the second-order sufficient optimality conditions require

$$
Z_{+}\left(x^{*}\right)^{T}\left(\nabla^{2} f\left(x^{*}\right)-\lambda_{2}^{*} \nabla^{2} g\left(x^{*}\right)\right) Z_{+}\left(x^{*}\right) \succ 0
$$

which gives

$$
2-\nabla^{2} g\left(x^{*}\right)_{33}>0 .
$$

Hence, x^{*} is a local minimizer if $\nabla^{2} g\left(x^{*}\right)_{33}<2$.
(c) Since conditions on f are only known at x^{*}, it is not sufficient to put any conditions on $\nabla^{2} g(x)$ to ensure global minimality.
2. We may make use of the fact that the problem has only simple bounds.

Constraint 1 and 2 are in the working set at the initial point, i.e., x_{1} and x_{2} are set to zero. The search direction is given by

$$
h_{33} p_{3}^{(0)}=-\left(h_{33} x_{3}^{(0)}+c_{3}\right), \quad \text { i.e. } \quad 3 p_{3}^{(0)}=-4,
$$

so that $p^{(0)}=\left(\begin{array}{lll}0 & 0 & -4 / 3\end{array}\right)^{T}$. The maximum steplength is given by $\alpha_{\max }=3 / 4$, so that $\alpha^{(0)}=3 / 4$ which gives $x^{(1)}=\left(\begin{array}{lll}0 & 0\end{array}\right)^{T}$. All three constraints are active, so $p^{(1)}=0$ and $x^{(2)}=x^{(1)}$. The multipliers are given by $\lambda^{(2)}=H x^{(2)}+c=c$. Since $\lambda_{1}^{(2)}<0$, constraint 1 is deleted from the working set. The search direction is given by

$$
h_{11} p_{1}^{(2)}=-\lambda_{1}^{(2)}, \quad \text { i.e. } \quad 2 p_{1}^{(2)}=2,
$$

so that $p^{(2)}=\left(\begin{array}{lll}1 & 0 & 0\end{array}\right)^{T}$. The maximum steplength is infinite, so that $\alpha^{(2)}=1$ which gives $x^{(3)}=\left(\begin{array}{lll}1 & 0 & 0\end{array}\right)^{T}$. The multipliers are given by $\lambda^{(3)}=H x^{(3)}+c=\left(\begin{array}{lll}0 & 1 & -1\end{array}\right)^{T}$. Since $\lambda_{3}^{(3)}<0$, constraint 3 is deleted from the working set. The search direction is given by

$$
\left(\begin{array}{ll}
h_{11} & h_{13} \\
h_{31} & h_{33}
\end{array}\right)\binom{p_{1}^{(3)}}{p_{3}^{(3)}}=-\binom{\lambda_{1}^{(3)}}{\lambda_{3}^{(3)}}, \quad \text { i.e. } \quad\left(\begin{array}{rr}
2 & -2 \\
-2 & 3
\end{array}\right)\binom{p_{1}^{(3)}}{p_{3}^{(3)}}=-\binom{0}{-1},
$$

so that $p^{(3)}=\left(\begin{array}{lll}1 & 0 & 1\end{array}\right)^{T}$. The maximum steplength is infinite, so that $\alpha^{(3)}=1$ which gives $x^{(4)}=\left(\begin{array}{lll}2 & 0 & 1\end{array}\right)^{T}$. The multipliers are given by $\lambda^{(4)}=H x^{(4)}+c=\left(\begin{array}{lll}0 & 2 & 0\end{array}\right)^{T}$. Since $\lambda^{(4)} \geq 0$, an optimal solution has been found.
3. (a) In this case $A=I$ and $b=0$. Hence, since $A x^{0)}=x^{(0)}>b=0$, the initial point $x^{(0)}$ is strictly feasible and there is no need to introduce s. We may let $\left.s^{(0)}=x^{0}\right)=\left(\begin{array}{ll}2 & 1\end{array} 2\right)^{T}$. Then, as $x-s=0$ is a linear equation, we will have $s^{(k)}=x^{(k)}$ throughout.
(b) The linear system of equations takes the form

$$
\left(\begin{array}{cc}
H & -I \\
\operatorname{diag}\left(\lambda^{(0)}\right) & \operatorname{diag}\left(x^{(0)}\right)
\end{array}\right)\binom{\Delta x}{\Delta \lambda}=-\binom{H x^{(0)}+c-\lambda^{(0)}}{\operatorname{diag}\left(x^{(0)}\right) \operatorname{diag}\left(\lambda^{(0)}\right) e-\mu^{(0)} e},
$$

where e is the vector of ones. Insertion of numerical values gives

$$
\left(\begin{array}{rrrrrr}
2 & 0 & -2 & -1 & 0 & 0 \\
0 & 2 & 1 & 0 & -1 & 0 \\
-2 & 1 & 3 & 0 & 0 & -1 \\
1 & 0 & 0 & 2 & 0 & 0 \\
0 & 2 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 2
\end{array}\right)\left(\begin{array}{l}
\Delta x_{1} \\
\Delta x_{2} \\
\Delta x_{3} \\
\Delta \lambda_{1} \\
\Delta \lambda_{2} \\
\Delta \lambda_{3}
\end{array}\right)=-\left(\begin{array}{r}
-3 \\
3 \\
3 \\
1.8 \\
1.8 \\
1.8
\end{array}\right) .
$$

(c) The unit step is accepted only if $x^{(0)}+\Delta x>0$ and $\lambda^{(0)}+\Delta \lambda>0$. Since $x_{2}^{(0)}+\Delta x_{s} \ngtr 0$ and $\lambda_{1}^{(0)}+\Delta \lambda_{1} \ngtr 0$, the unit step is not accepted. We may for example let $\alpha^{(0)}=0.99 \alpha_{\max }$, where $\alpha_{\max }$ is the maximum step, i.e., $\alpha_{\max }=$ $-\lambda_{1}^{(0)} /\left(\Delta \lambda_{1}\right)$. Then $x^{(1)}=x^{(0)}+\alpha^{(0)} \Delta x$ and $\lambda^{(1)}=\lambda^{(0)}+\alpha^{(0)} \Delta \lambda$.
4. (See the course material.)
5. (a) By adding an additional variable z, we may rewrite (P) as the nonlinear program
$(N L P) \quad \begin{array}{ll}\underset{x \in \mathbb{R}^{n}, z \in \mathbb{R}}{ } \\ \operatorname{minimize} \\ \text { subject to }\end{array} \quad z-f_{i}(x) \geq 0, \quad i=1, \ldots, m$.
As $f_{i}, i=1, \ldots, n$, are convex on \mathbb{R}^{n}, the functions $z-f_{i}(x)$ are concave on $\mathbb{R}^{n} \times \mathbb{R}$. Hence, $(N L P)$ has a convex feasible region. In addition, it has a linear objective function, and is therefore a convex problem. Consequently, a local minimizer to $(N L P)$ is also a global minimizer.
(b) The Lagrangian function associated with $(N L P)$ is given by $\mathcal{L}(x, z, \lambda)=z-$ $\sum_{i=1}^{m} \lambda_{i}\left(z-f_{i}(x)\right)$. For a given (x, z, λ), the quadratic programming subproblem is given by

$$
\begin{array}{ll}
\operatorname{minimize}_{\Delta x \in \mathbb{R}^{n}, \Delta z \in \mathbb{R}} & \frac{1}{2}\left(\begin{array}{cc}
\Delta z^{T} & \Delta x^{T}
\end{array}\right)\left(\begin{array}{cc}
0 & 0 \\
0 & \sum_{i=1}^{m} \lambda_{i} \nabla^{2} f_{i}(x)
\end{array}\right)\binom{\Delta z}{\Delta x} \\
& +\left(\begin{array}{ll}
1 & 0
\end{array}\right)\binom{\Delta z}{\Delta x} \tag{QP}\\
\text { subject to } & \left(\begin{array}{ll}
1 & -\nabla f_{i}(x)^{T}
\end{array}\right)\binom{\Delta z}{\Delta x} \geq-\left(z-f_{i}(x)\right), \quad i=1, \ldots, m .
\end{array}
$$

Simplification gives
$(Q P)$

$$
\begin{array}{ll}
\underset{\Delta x \in \mathbb{R}^{n}, \Delta z \in \mathbb{R}}{\operatorname{minimize}} & \frac{1}{2} \Delta x^{T}\left(\sum_{i=1}^{m} \lambda_{i} \nabla^{2} f_{i}(x)\right) \Delta x+\Delta z \\
\text { subject to } & \Delta z-\nabla f_{i}(x)^{T} \Delta x \geq-\left(z-f_{i}(x)\right), \quad i=1, \ldots, m .
\end{array}
$$

(c) The only concern regarding convexity of the quadratic programming subproblem is whether the Hessian is positive semidefinite. We know that the Lagrange multipliers of $(N L P)$ are nonnegative, so it is natural to initially let $\lambda^{(0)} \geq 0$. The Hessian of the quadratic program is then given by $\sum_{i=1}^{m} \lambda_{i}^{(0)} \nabla^{2} f_{i}\left(x^{(0)}\right)$, which is positive semidefinite since $\lambda_{i}^{(0)} \geq 0$ and $\nabla^{2} f_{i}\left(x^{(0)}\right) \succeq 0$ for $i=1, \ldots, m$, due to the convexity of $f_{i}, i=1, \ldots, m$. The Lagrange multipliers of the quadratic program give $\lambda^{(1)}$. They will be nonnegative, since $(Q P)$ has inequality constraints. We may now give this argument for the quadratic programming subproblem at iteration k and $k+1$, so convexity holds by induction if we initially let $\lambda^{(0)} \geq 0$. (In fact, we will have $\lambda^{(k)} \geq 0, \sum_{i=1}^{m} \lambda_{i}^{(k)}=1$ for $k \geq 1$.)

