1. We have

$$
\begin{aligned}
f(x) & =\frac{1}{2} x_{1}^{2}+\frac{1}{2} x_{2}^{2}, & g(x) & =x_{1}+x_{2}+x_{2}^{2}+2, \\
\nabla f(x) & =\binom{x_{1}}{x_{2}}, & \nabla g(x) & =\binom{1}{1+2 x_{2}}, \\
\nabla^{2} f(x) & =\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right), & \nabla^{2} g(x) & =\left(\begin{array}{cc}
0 & 0 \\
0 & 2
\end{array}\right) .
\end{aligned}
$$

(a) Insertion of numerical values in the expressions above gives the first QP-problem according to

$$
\begin{array}{ll}
\min & \frac{1}{2} p_{1}^{2}+\frac{1}{2} p_{2}^{2} \\
\text { subject to } & p_{1}+p_{2}=-2 .
\end{array}
$$

This is a convex QP-problem with a globally optimal solution given by

$$
\begin{aligned}
p_{1}-\lambda & =0, \\
p_{2}-\lambda & =0, \\
p_{1}+p_{2} & =-2 .
\end{aligned}
$$

The solution is given by $p_{1}=-1, p_{2}=-1$ and $\lambda=-1$, which agrees with the printout from the SQP-solver.
(b) We can see that $\nabla^{2} f(x)$ is positive definite and $\nabla^{2} g(x)$ is positive semidefinite, independently of x. Moreover λ is non-positive in all iterations. This implies that the solution to each QP subproblem is optimal also for the case when the equality constraint is changed to a less than or equal constraint. Hence, the iterates would not change at all if the constraint was changed as suggested.
(c) The inequality-constrained problem is a convex problem, and in addition a relaxation of the original problem. Hence we get convergence towards a global minimizer of this problem, which is also a global minimizer of $(N L P)$.
2. (a) The problem $(Q P)$ is a convex quadratic program. The primal part of the trajectory is obtained as minimizer to the barrier-transformed problem

$$
\left(P_{\mu}\right) \quad \min \quad \frac{1}{2} x_{1}^{2}+\frac{1}{2} x_{2}^{2}-\mu \ln \left(x_{1}+x_{2}-2\right)
$$

under the implicit condition that $x_{1}+x_{2}-2>0$. The first-order optimality conditions of $\left(P_{\mu}\right)$ gives

$$
\begin{aligned}
& x_{1}(\mu)-\frac{\mu}{x_{1}(\mu)+x_{2}(\mu)-2}=0, \\
& x_{2}(\mu)-\frac{\mu}{x_{1}(\mu)+x_{2}(\mu)-2}=0 .
\end{aligned}
$$

These equations are symmetric in $x_{1}(\mu)$ and $x_{2}(\mu)$. Hence, $x_{1}(\mu)=x_{2}(\mu)$. This means that $2 x_{1}(\mu)^{2}-2 x_{1}(\mu)-\mu=0$, from which it follows that

$$
x_{1}(\mu)=x_{2}(\mu)=\frac{1}{2}+\sqrt{\frac{1}{4}+\frac{\mu}{2}}=\frac{1}{2}+\frac{1}{2} \sqrt{1+2 \mu} .
$$

where the plus sign has been chosen for the square root to enforce $x_{1}(\mu)+$ $x_{2}(\mu)-2>0$. Since $\left(P_{\mu}\right)$ is a convex problem, this is a global minimizer.
The dual part of the trajectory, i.e. $\lambda(\mu)$, is normally given by $\lambda_{i}(\mu)=\mu / g_{i}(x(\mu))$, $i=1, \ldots, m$. Here we only have one constraint, so

$$
\lambda(\mu)=\frac{\mu}{x_{1}(\mu)+x_{2}(\mu)-2}=\frac{\mu}{\sqrt{1+2 \mu}-1}=\frac{1}{2}+\frac{1}{2} \sqrt{1+2 \mu} .
$$

(b) As $\mu \rightarrow 0$ it follows that $x(\mu) \rightarrow(11)^{T}$ and $\lambda(\mu) \rightarrow 1$. Let $x^{*}=\left(\begin{array}{ll}1 & 1\end{array}\right)^{T}$ and $\lambda^{*}=1$. Then x^{*} and λ^{*} satisfy the first-order optimality conditions of $(Q P)$. Since $(Q P)$ is a convex problem, this is sufficient for global optimality of $(Q P)$.
(c) We have

$$
x_{1}(\mu)-x_{1}^{*}=x_{2}(\mu)-x_{2}^{*}=-\frac{1}{2}+\frac{1}{2} \sqrt{1+2 \mu}=\frac{1}{2} \mu+o(\mu) .
$$

This is as expected. We would expect $\left\|x(\mu)-x^{*}\right\|_{2}$ to be of the order μ near an optimal solution where regularity holds.
3. (See the course material.)
4. (a) The objective function is $f(x)=e^{x_{1}}+x_{1} x_{2}+x_{2}^{2}-2 x_{2} x_{3}+x_{3}^{2}-2 x_{1}-x_{2}-x_{3}$. Differentiation gives

$$
\nabla f(x)=\left(\begin{array}{c}
e^{x_{1}}+x_{2}-2 \\
x_{1}+2 x_{2}-2 x_{3}-1 \\
-2 x_{2}+2 x_{3}-1
\end{array}\right), \quad \nabla^{2} f(x)=\left(\begin{array}{rrr}
e^{x_{1}} & 1 & 0 \\
1 & 2 & -2 \\
0 & -2 & 2
\end{array}\right)
$$

In particular, $\nabla f(\widetilde{x})=(0-1-1)^{T}$. With $g_{1}(x)=-x_{1}^{2}-x_{2}^{2}-x_{3}^{2}+5$ we get $g_{1}(\widetilde{x})=3$, which mean that constraint 1 is not active at \widetilde{x}. Since $\nabla f(\widetilde{x}) \neq 0$, constraint 2 must be active for \widetilde{x} to possibly satisfy the first-order necessary optimality conditions. These conditions require the existence of a $\tilde{\lambda}_{2}$ such that $\nabla f(\widetilde{x})=a \tilde{\lambda}_{2}$ and $a^{T} \widetilde{x}+2=0$ with $\tilde{\lambda}_{2} \geq 0$.
The condition $\nabla f(\widetilde{x})=a \tilde{\lambda}_{2}$ takes the form

$$
\left(\begin{array}{r}
0 \\
-1 \\
-1
\end{array}\right)=\left(\begin{array}{c}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right) \tilde{\lambda}_{2}
$$

and it can not be fulfilled with $\tilde{\lambda}_{2}=0$. Hence, $\tilde{\lambda}_{2}>0$, and we obtain $a_{1}=0$, $a_{2}=a_{3}=-1 / \tilde{\lambda}_{2}$. The condition $-2 / \tilde{\lambda}_{2}+2=0$ so that $\tilde{\lambda}_{2}=1$. Hence, $a=(0$ $-1-1)^{T}$.
If $a=(0-1-1)^{T}$, then \tilde{x} fulfils the first-order necessary optimality conditions together with $\tilde{\lambda}=\left(\begin{array}{ll}0 & 1\end{array}\right)^{T}$.
(b) As we only have one active linear constraint at \widetilde{x} we obtain

$$
\nabla_{x x}^{2} \mathcal{L}(\widetilde{x}, \tilde{\lambda})=\nabla^{2} f(\widetilde{x})=\left(\begin{array}{rrr}
1 & 1 & 0 \\
1 & 2 & -2 \\
0 & -2 & 2
\end{array}\right)
$$

Since $\tilde{\lambda}_{2}>0$, we also have that $A_{+}(\widetilde{x})=a^{T}$, where we can let $a^{T}=(N B)$ for $B=-1$ and $N=\left(\begin{array}{ll}0 & -1\end{array}\right)$. We then obtain a matrix whose columns form a basis for the null space of $A_{+}(\widetilde{x})$ as

$$
Z_{+}(\widetilde{x})=\binom{I}{-B^{-1} N}=\left(\begin{array}{rr}
1 & 0 \\
0 & 1 \\
0 & -1
\end{array}\right)
$$

which gives

$$
Z_{+}(\widetilde{x})^{T} \nabla^{2} f(\widetilde{x}) Z_{+}(\widetilde{x})=\left(\begin{array}{ll}
1 & 1 \\
1 & 8
\end{array}\right)
$$

which is a positive definite matrix. Hence, \widetilde{x} fulfils the second-order sufficient optimality conditions and is therefore a local minimizer.
5. (a) The function $f(y)=y_{+}^{2}$ has derivative $f^{\prime}(y)=0$ for $y<0$ and $f^{\prime}(y)=2 y$ for $y>0$. Hence, $f^{\prime}(y)$ is continuous with $f^{\prime}(0)=0$. The second derivative is given by $f^{\prime \prime}(y)=0$ for $y<0$ and $f^{\prime \prime}(y)=2$ for $y>0$. Hence, $f^{\prime \prime}$ is discontinuous at $y=0$. As a consequence, the objective function has discontinuous Hessian at points where $p_{i}^{T} x=u_{i}$ for some $i \in \mathcal{U}$ or $p_{i}^{T} x=l_{i}$ for some $i \in \mathcal{L}$.
(b) Consider a fixed x and minimize over y in $(Q P)$. We want to show that $y_{i}=$ $\left(p_{i}^{T} x-u_{i}\right)_{+}, i \in \mathcal{U}$, and $y_{i}=\left(l_{i}-p_{i}^{T} x\right)_{+}, i \in \mathcal{L}$. Assume that $p_{i}^{T} x-u_{i}<0$ for some $i \in \mathcal{U}$. Then, $y_{i}=0$, since $y_{i}=0$ is the the minimizer of y_{i}^{2}. Similarly, if $p_{i}^{T} x-u_{i} \geq 0$, the optimal choice of y_{i} is $y_{i}=p_{i}^{T} x-u_{i}$, as y_{i}^{2} is a strictly increasing function for $y_{i}>0$. Hence, $y_{i}=\left(p_{i}^{T} x-u_{i}\right)_{+}, i \in \mathcal{U}$, as required. The argument for $i \in \mathcal{L}$ is analogous.
(c) We may write the Lagrangian function as

$$
l(x, y, \lambda, \eta)=\frac{1}{2} \sum_{i \in \mathcal{U}} y_{i}^{2}+\frac{1}{2} \sum_{i \in \mathcal{L}} y_{i}^{2}-\sum_{i \in \mathcal{U}} \lambda_{i}\left(y_{i}-p_{i}^{T} x+u_{i}\right)-\sum_{i \in \mathcal{L}} \lambda_{i}\left(y_{i}+p_{i}^{T} x-l_{i}\right)-x^{T} \eta
$$

for Lagrange multipliers $\lambda_{i} \geq 0, i \in \mathcal{U} \cup \mathcal{L}$, and $\eta \geq 0$. Let $P_{\mathcal{U}}$ be the matrix whose rows comprise $p_{i}^{T}, i \in \mathcal{I}$, and analogously for $P_{\mathcal{L}}$. Let subscripts " $\mathcal{U}^{\prime \prime}$ and " $\mathcal{L}^{\prime \prime}$ respectively denote the vectors with components in the two sets. Also, let $\Lambda_{\mathcal{U}}=\operatorname{diag}\left(\lambda_{\mathcal{U}}\right), Y_{\mathcal{U}}=\operatorname{diag}\left(y_{\mathcal{U}}\right), \Lambda_{\mathcal{L}}=\operatorname{diag}\left(\lambda_{\mathcal{L}}\right), Y_{\mathcal{L}}=\operatorname{diag}\left(y_{\mathcal{L}}\right), X=\operatorname{diag}(x)$ and $N=\operatorname{diag}(\eta)$. For a positive barrier parameter μ, the perturbed first-order optimality conditions may be written

$$
\begin{aligned}
P_{\mathcal{U}}^{T} \lambda_{\mathcal{U}}-P_{\mathcal{L}}^{T} \lambda_{\mathcal{L}}-\eta & =0, \\
y_{\mathcal{U}}-\lambda_{\mathcal{U}} & =0, \\
y_{\mathcal{L}}-\lambda_{\mathcal{L}} & =0, \\
\Lambda_{\mathcal{U}}\left(y_{\mathcal{U}}-P_{\mathcal{U}} x+u_{\mathcal{U}}\right) & =\mu e, \\
\Lambda_{\mathcal{L}}\left(y_{\mathcal{L}}+P_{\mathcal{L}} x-l_{\mathcal{L}}\right) & =\mu e, \\
N x & =\mu e
\end{aligned}
$$

