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Brief solutions

1. We have

f(x) =
1

2
x21 +

1

2
x22, g(x) = x1 + x2 + x22 + 2,

∇f(x) =

(
x1

x2

)
, ∇g(x) =

(
1

1 + 2x2

)
,

∇2f(x) =

(
1 0

0 1

)
, ∇2g(x) =

(
0 0

0 2

)
.

(a) Insertion of numerical values in the expressions above gives the first QP-problem
according to

min 1
2p

2
1 + 1

2p
2
2

subject to p1 + p2 = −2.

This is a convex QP-problem with a globally optimal solution given by

p1 − λ = 0,

p2 − λ = 0,

p1 + p2 = −2.

The solution is given by p1 = −1, p2 = −1 and λ = −1, which agrees with the
printout from the SQP-solver.

(b) We can see that ∇2f(x) is positive definite and ∇2g(x) is positive semidefinite,
independently of x. Moreover λ is non-positive in all iterations. This implies
that the solution to each QP subproblem is optimal also for the case when the
equality constraint is changed to a less than or equal constraint. Hence, the
iterates would not change at all if the constraint was changed as suggested.

(c) The inequality-constrained problem is a convex problem, and in addition a
relaxation of the original problem. Hence we get convergence towards a global
minimizer of this problem, which is also a global minimizer of (NLP ).

2. (a) The problem (QP ) is a convex quadratic program. The primal part of the
trajectory is obtained as minimizer to the barrier-transformed problem

(Pµ) min 1
2x

2
1 + 1

2x
2
2 − µ ln(x1 + x2 − 2)

under the implicit condition that x1 + x2 − 2 > 0. The first-order optimality
conditions of (Pµ) gives

x1(µ)− µ

x1(µ) + x2(µ)− 2
= 0,

x2(µ)− µ

x1(µ) + x2(µ)− 2
= 0.

These equations are symmetric in x1(µ) and x2(µ). Hence, x1(µ) = x2(µ). This
means that 2x1(µ)2 − 2x1(µ)− µ = 0, from which it follows that

x1(µ) = x2(µ) =
1

2
+

√
1

4
+
µ

2
=

1

2
+

1

2

√
1 + 2µ.

1
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where the plus sign has been chosen for the square root to enforce x1(µ) +
x2(µ)− 2 > 0. Since (Pµ) is a convex problem, this is a global minimizer.

The dual part of the trajectory, i.e. λ(µ), is normally given by λi(µ) = µ/gi(x(µ)),
i = 1, . . . ,m. Here we only have one constraint, so

λ(µ) =
µ

x1(µ) + x2(µ)− 2
=

µ√
1 + 2µ− 1

=
1

2
+

1

2

√
1 + 2µ.

(b) As µ → 0 it follows that x(µ) → (1 1)T and λ(µ) → 1. Let x∗ = (1 1)T and
λ∗ = 1. Then x∗ and λ∗ satisfy the first-order optimality conditions of (QP ).
Since (QP ) is a convex problem, this is sufficient for global optimality of (QP ).

(c) We have

x1(µ)− x∗1 = x2(µ)− x∗2 = −1

2
+

1

2

√
1 + 2µ =

1

2
µ+ o(µ).

This is as expected. We would expect ‖x(µ) − x∗‖2 to be of the order µ near
an optimal solution where regularity holds.

3. (See the course material.)

4. (a) The objective function is f(x) = ex1 + x1x2 + x22 − 2x2x3 + x23 − 2x1 − x2 − x3.
Differentiation gives

∇f(x) =


ex1 + x2 − 2

x1 + 2x2 − 2x3 − 1

−2x2 + 2x3 − 1

 , ∇2f(x) =


ex1 1 0

1 2 −2

0 −2 2

 .
In particular, ∇f(x̃) = (0 –1 –1)T . With g1(x) = −x21 − x22 − x23 + 5 we get
g1(x̃) = 3, which mean that constraint 1 is not active at x̃. Since ∇f(x̃) 6= 0,
constraint 2 must be active for x̃ to possibly satisfy the first-order necessary
optimality conditions. These conditions require the existence of a λ̃2 such that
∇f(x̃) = aλ̃2 and aTx̃+ 2 = 0 with λ̃2 ≥ 0.

The condition ∇f(x̃) = aλ̃2 takes the form
0

−1

−1

 =


a1

a2

a3

 λ̃2.
and it can not be fulfilled with λ̃2 = 0. Hence, λ̃2 > 0, and we obtain a1 = 0,
a2 = a3 = −1/λ̃2. The condition −2/λ̃2 + 2 = 0 so that λ̃2 = 1. Hence, a = (0
–1 −1)T .

If a = (0 –1 −1)T , then x̃ fulfils the first-order necessary optimality conditions
together with λ̃ = (0 1)T .

(b) As we only have one active linear constraint at x̃ we obtain

∇2
xxL(x̃, λ̃) = ∇2f(x̃) =


1 1 0

1 2 −2

0 −2 2

 .
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Since λ̃2 > 0, we also have that A+(x̃) = aT , where we can let aT = (N B) for
B = −1 and N = (0 − 1). We then obtain a matrix whose columns form a
basis for the null space of A+(x̃) as

Z+(x̃) =

(
I

−B−1N

)
=


1 0

0 1

0 −1

 ,
which gives

Z+(x̃)T∇2f(x̃)Z+(x̃) =

(
1 1

1 8

)
,

which is a positive definite matrix. Hence, x̃ fulfils the second-order sufficient
optimality conditions and is therefore a local minimizer.

5. (a) The function f(y) = y2+ has derivative f ′(y) = 0 for y < 0 and f ′(y) = 2y for
y > 0. Hence, f ′(y) is continuous with f ′(0) = 0. The second derivative is given
by f ′′(y) = 0 for y < 0 and f ′′(y) = 2 for y > 0. Hence, f ′′ is discontinuous at
y = 0. As a consequence, the objective function has discontinuous Hessian at
points where pTi x = ui for some i ∈ U or pTi x = li for some i ∈ L.

(b) Consider a fixed x and minimize over y in (QP ). We want to show that yi =
(pTi x− ui)+, i ∈ U , and yi = (li − pTi x)+, i ∈ L. Assume that pTi x− ui < 0 for
some i ∈ U . Then, yi = 0, since yi = 0 is the the minimizer of y2i . Similarly,
if pTi x − ui ≥ 0, the optimal choice of yi is yi = pTi x − ui, as y2i is a strictly
increasing function for yi > 0. Hence, yi = (pTi x−ui)+, i ∈ U , as required. The
argument for i ∈ L is analogous.

(c) We may write the Lagrangian function as

l(x, y, λ, η) = 1
2

∑
i∈U

y2i + 1
2

∑
i∈L

y2i −
∑
i∈U

λi(yi − pTi x+ ui)−
∑
i∈L

λi(yi + pTi x− li)− xTη,

for Lagrange multipliers λi ≥ 0, i ∈ U ∪ L, and η ≥ 0. Let PU be the matrix
whose rows comprise pTi , i ∈ I, and analogously for PL. Let subscripts ′′U ′′ and
′′L′′ respectively denote the vectors with components in the two sets. Also, let
ΛU = diag(λU ), YU = diag(yU ), ΛL = diag(λL), YL = diag(yL), X = diag(x)
and N = diag(η). For a positive barrier parameter µ, the perturbed first-order
optimality conditions may be written

P TUλU − P TLλL − η = 0,

yU − λU = 0,

yL − λL = 0,

ΛU (yU − PUx+ uU ) = µe,

ΛL(yL + PLx− lL) = µe,

Nx = µe.


