SF2822 Applied nonlinear optimization, final exam
 Wednesday August 202015 8.00-13.00
 Brief solutions

1. (a) As $g\left(x^{*}\right)=0$, the constraint is active, and as $\nabla g\left(x^{*}\right)$ is nonzero, it holds that x^{*} is a regular point. Hence, for x^{*} to be a local minimizer to $(N L P)$, the first-order necessary optimality conditions must hold. Hence, there must exist a nonnegative λ^{*} such that $\nabla f\left(x^{*}\right)=\nabla g\left(x^{*}\right) \lambda^{*}$, i.e.,

$$
\left(\begin{array}{l}
2 \\
2 \\
0
\end{array}\right)=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) \lambda^{*} .
$$

There is no such λ^{*}. Hence, x^{*} is not a local minimizer to ($N L P$).
(b) The first-order optimality conditions

$$
\left(\begin{array}{l}
2 \\
2 \\
0
\end{array}\right)=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) \lambda^{*},
$$

are only violated in the last component if $\lambda^{*}=2$. Hence, for this value of λ^{*}, we have

$$
\left(\begin{array}{l}
2 \\
2 \\
0
\end{array}\right)=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) \lambda^{*}+\left(\begin{array}{r}
0 \\
0 \\
-2
\end{array}\right)
$$

Consequently, if we add a second constraint in the form of the bound-constraint $-x_{3} \geq-x_{3}^{*}$ to $(N L P)$, the first-order optimality conditions are satisfied for $\lambda_{1}^{*}=2, \lambda_{2}^{*}=2$.
In order to verify if x^{*} is a local minimizer, we now examine the second-order optimality conditions. We obtain

$$
\begin{aligned}
\nabla^{2} \mathcal{L}\left(x^{*}, \lambda^{*}\right) & =\nabla^{2} f\left(x^{*}\right)-\nabla^{2} g\left(x^{*}\right) \lambda_{1}^{*} \\
& =\left(\begin{array}{rrr}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -2
\end{array}\right)-2\left(\begin{array}{rrr}
-5 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & -3
\end{array}\right)=\left(\begin{array}{lll}
9 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 4
\end{array}\right) .
\end{aligned}
$$

As we have strict complementarity, we now want to check the definiteness of the reduced Hessian of the Lagrangian with respect to the active constraint gradients, given by

$$
A\left(x^{*}\right)=\left(\begin{array}{rrr}
1 & 1 & 1 \\
0 & 0 & -1
\end{array}\right)
$$

However, $\nabla^{2} \mathcal{L}\left(x^{*}, \lambda^{*}\right)$ is a diagonal matrix with positive diagonal elements, hence positive definite. Thus, the reduced Hessian is also positive definite.
We conclude that the second-order sufficient optimality conditions hold at x^{*} together with λ^{*}. Hence, x^{*} is a local minimizer to the problem where the bound-constraint $-x_{3} \geq-x_{3}^{*}$ has been added.
2. No constraints are active at the initial point. Hence, the working set is empty, i.e., $\mathcal{W}=\emptyset$. Since $H=I$ and $c=0$, we obtain $p^{(0)}=-\left(H x^{(0)}+c\right)=-x^{(0)}$. The maximum steplength is given by

$$
\alpha_{\max }=\min _{i: a_{i}^{T} p^{(0)}<0} \frac{a_{i}^{T} x^{(0)}-b_{i}}{-a_{i}^{T} p^{(0)}}=\frac{1}{3}
$$

where the minimum is attained for $i=3$. Consequently, $\alpha^{(0)}=1 / 3$ so that

$$
x^{(1)}=x^{(0)}+\alpha^{(0)} p^{(0)}=\binom{1}{2}+\frac{1}{3}\binom{-1}{-2}=\binom{\frac{2}{3}}{\frac{4}{3}}
$$

with $\mathcal{W}=\{3\}$. The solution to the corresponding equality-constrained quadratic program is given by

$$
\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1 \\
1 & 1 & 0
\end{array}\right)\left(\begin{array}{c}
p_{1}^{(1)} \\
p_{2}^{(1)} \\
-\lambda_{3}^{(2)}
\end{array}\right)=-\left(\begin{array}{c}
\frac{2}{3} \\
\frac{4}{3} \\
0
\end{array}\right)
$$

One way of solving this system of linear equations is to first express $p^{(1)}$ in $\lambda_{3}^{(2)}$ from the first two equations as

$$
p_{1}^{(1)}=-\frac{2}{3}+\lambda_{3}^{(2)}, \quad p_{2}^{(1)}=-\frac{4}{3}+\lambda_{3}^{(2)}
$$

Insertion into the last equation gives $\lambda_{3}^{(2)}=1$, so that

$$
p^{(1)}=\left(\begin{array}{ll}
\frac{1}{3} & -\frac{1}{3}
\end{array}\right)^{T}
$$

The maximum steplength is given by

$$
\alpha_{\max }=\min _{i: a_{i}^{T} p^{(0)}<0} \frac{a_{i}^{T} x^{(0)}-b_{i}}{-a_{i}^{T} p^{(0)}}=7
$$

which is attained for $i=2$. Hence, $\alpha^{(1)}=1$, so that

$$
x^{(2)}=x^{(1)}+\alpha^{(1)} p^{(1)}=\binom{\frac{2}{3}}{\frac{4}{3}}+\binom{\frac{1}{3}}{-\frac{1}{3}}=\binom{1}{1} .
$$

Since $\lambda_{3}^{(2)} \geq 0$, it follows that $x^{(2)}$ is the optimal solution.
3. Since $g\left(x^{(0)}\right)>0$, it is not necessary to introduce slack variables for the constraints. If slack variables are not introduced, the Newton step $\Delta x, \Delta \lambda$ is given by

$$
\left(\begin{array}{cc}
\nabla_{x x}^{2} \mathcal{L}(x, \lambda) & -A(x)^{T} \\
\Lambda A(x) & G(x)
\end{array}\right)\binom{\Delta x}{\Delta \lambda}=-\binom{\nabla f(x)-A(x)^{T} \lambda}{G(x) \lambda-\mu e}
$$

where $G(x)=\operatorname{diag}(g(x)), \Lambda=\operatorname{diag}(\lambda)$ and e is the vector of ones.
In our case we get

$$
\left(\begin{array}{ccc}
1+2 \lambda & 0 & 2 x_{1} \\
0 & 1+\lambda & x_{2} \\
-2 \lambda x_{1} & -\lambda x_{2} & 2-x_{1}^{2}-\frac{1}{2} x_{2}^{2}
\end{array}\right)\left(\begin{array}{c}
\Delta x_{1} \\
\Delta x_{2} \\
\Delta \lambda
\end{array}\right)=-\left(\begin{array}{c}
x_{1}-3+2 \lambda x_{1} \\
x_{2}-2+\lambda x_{2} \\
\left(2-x_{1}^{2}-\frac{1}{2} x_{2}^{2}\right) \lambda-\mu
\end{array}\right)
$$

Then, for the first iteration we obtain

$$
\left(\begin{array}{rrr}
5 & 0 & 2 \\
0 & 3 & 0 \\
-4 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
\Delta x_{1}^{(0)} \\
\Delta x_{2}^{(0)} \\
\Delta \lambda^{(0)}
\end{array}\right)=-\left(\begin{array}{r}
2 \\
-2 \\
0
\end{array}\right)
$$

The next iterate is given by $x^{(1)}=x^{(0)}+\alpha^{(0)} \Delta x_{1}^{(0)}, \lambda^{(1)}=\lambda^{(0)}+\alpha^{(0)} \Delta \lambda^{(0)}$, where $\alpha^{(0)}$ is given by some approximate linesearch. The steplength $\alpha^{(0)}$ must be chosen such that $g\left(x^{(0)}+\alpha^{(0)} \Delta x^{(0)}\right)>0$ and $\lambda^{(0)}+\alpha^{(0)} \Delta \lambda^{(0)}>0$.
4. (See the course material.)
5. (a) The Lagrange multiplier $\lambda^{(1)}$ corresponds to an inequality constraint in the SQP subproblem. Hence, it must be nonnegative. This is not the case in the printout.
(b) We have

$$
\begin{aligned}
f(x) & =\frac{1}{2}\left(x_{1}+1\right)^{2}+\frac{1}{2}\left(x_{2}+2\right)^{2}, & g(x) & =3\left(x_{1}+x_{2}-2\right)^{2}+\left(x_{1}-x_{2}\right)^{2}-6 \\
\nabla f(x) & =\binom{x_{1}+1}{x_{2}+2}, & \nabla g(x) & =\binom{8 x_{1}+4 x_{2}-12}{4 x_{1}+8 x_{2}-12}, \\
\nabla^{2} f(x) & =\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), & \nabla^{2} g(x) & =\left(\begin{array}{ll}
8 & 4 \\
4 & 8
\end{array}\right) .
\end{aligned}
$$

Insertion of numerical values in the expressions above gives the first QP-problem according to

$$
\begin{array}{ll}
\min & \frac{1}{2} p_{1}^{2}+\frac{1}{2} p_{2}^{2}+p_{1}+2 p_{2} \\
\text { subject to } & -12 p_{1}-12 p_{2} \geq-6
\end{array}
$$

This is a convex QP-problem with a globally optimal solution given by $p_{1}=-1$, $p_{2}=-2$ and $\lambda=0$, so that $x^{(1)}=\left(\begin{array}{ll}-1 & -2\end{array}\right)^{T}, \lambda^{(1)}=0$.
(c) We can see that $g\left(x^{(1)}\right)=3 \cdot 25+1-6=70 \geq 0$, so that $x^{(1)}$ is feasible to $(N L P)$. In addition, since $f(x)$ is a strictly convex quadratic function and $\lambda^{(0)}=0$, it follows that $x^{(1)}$ is a global minimizer to $f(x)$ over all \mathbb{R}^{2}. Hence, since $x^{(1)}$ is feasible to $(N L P)$, it follows that it is a global minimizer to $(N L P)$.

