
SF2822 Applied nonlinear optimization, final exam
Wednesday August 20 2015 8.00–13.00

Brief solutions

1. (a) As g(x∗) = 0, the constraint is active, and as ∇g(x∗) is nonzero, it holds that
x∗ is a regular point. Hence, for x∗ to be a local minimizer to (NLP ), the
first-order necessary optimality conditions must hold. Hence, there must exist
a nonnegative λ∗ such that ∇f(x∗) = ∇g(x∗)λ∗, i.e.,
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There is no such λ∗. Hence, x∗ is not a local minimizer to (NLP ).

(b) The first-order optimality conditions
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are only violated in the last component if λ∗ = 2. Hence, for this value of λ∗,
we have
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Consequently, if we add a second constraint in the form of the bound-constraint
−x3 ≥ −x∗3 to (NLP ), the first-order optimality conditions are satisfied for
λ∗1 = 2, λ∗2 = 2.

In order to verify if x∗ is a local minimizer, we now examine the second-order
optimality conditions. We obtain

∇2L(x∗, λ∗) = ∇2f(x∗)−∇2g(x∗)λ∗1

=


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As we have strict complementarity, we now want to check the definiteness of
the reduced Hessian of the Lagrangian with respect to the active constraint
gradients, given by

A(x∗) =

(
1 1 1

0 0 −1

)
.

However, ∇2L(x∗, λ∗) is a diagonal matrix with positive diagonal elements,
hence positive definite. Thus, the reduced Hessian is also positive definite.

We conclude that the second-order sufficient optimality conditions hold at x∗
together with λ∗. Hence, x∗ is a local minimizer to the problem where the
bound-constraint −x3 ≥ −x∗3 has been added.
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2. No constraints are active at the initial point. Hence, the working set is empty, i.e.,
W = ∅. Since H = I and c = 0, we obtain p(0) = −(Hx(0) + c) = −x(0). The
maximum steplength is given by

αmax = min
i:aTi p

(0)<0

aTi x
(0) − bi
−aTi p(0)

=
1

3
,

where the minimum is attained for i = 3. Consequently, α(0) = 1/3 so that

x(1) = x(0) + α(0)p(0) =
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=
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with W = {3}. The solution to the corresponding equality-constrained quadratic
program is given by
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One way of solving this system of linear equations is to first express p(1) in λ

(2)
3 from

the first two equations as

p
(1)
1 = −2

3
+ λ

(2)
3 , p

(1)
2 = −4

3
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3 .

Insertion into the last equation gives λ
(2)
3 = 1, so that

p(1) =
(

1
3 −1

3

)T
.

The maximum steplength is given by

αmax = min
i:aTi p

(0)<0

aTi x
(0) − bi
−aTi p(0)

= 7,

which is attained for i = 2. Hence, α(1) = 1, so that

x(2) = x(1) + α(1)p(1) =

(
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3

)
+
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)
=
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)
.

Since λ
(2)
3 ≥ 0, it follows that x(2) is the optimal solution.

3. Since g(x(0)) > 0, it is not necessary to introduce slack variables for the constraints.

If slack variables are not introduced, the Newton step ∆x, ∆λ is given by(
∇2

xxL(x, λ) −A(x)T

ΛA(x) G(x)

)(
∆x

∆λ

)
= −

(
∇f(x)−A(x)Tλ

G(x)λ− µe

)
,
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where G(x) = diag(g(x)), Λ = diag(λ) and e is the vector of ones.

In our case we get
1 + 2λ 0 2x1

0 1 + λ x2

−2λx1 −λx2 2− x21 − 1
2x

2
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
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Then, for the first iteration we obtain
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The next iterate is given by x(1) = x(0) + α(0)∆x
(0)
1 , λ(1) = λ(0) + α(0)∆λ(0), where

α(0) is given by some approximate linesearch. The steplength α(0) must be chosen
such that g(x(0) + α(0)∆x(0)) > 0 and λ(0) + α(0)∆λ(0) > 0.

4. (See the course material.)

5. (a) The Lagrange multiplier λ(1) corresponds to an inequality constraint in the
SQP subproblem. Hence, it must be nonnegative. This is not the case in the
printout.

(b) We have

f(x) =
1

2
(x1 + 1)2 +

1

2
(x2 + 2)2, g(x) = 3(x1 + x2 − 2)2 + (x1 − x2)2 − 6,

∇f(x) =

(
x1 + 1

x2 + 2

)
, ∇g(x) =

(
8x1 + 4x2 − 12

4x1 + 8x2 − 12

)
,

∇2f(x) =

(
1 0

0 1

)
, ∇2g(x) =

(
8 4

4 8

)
.

Insertion of numerical values in the expressions above gives the first QP-problem
according to

min 1
2p

2
1 + 1

2p
2
2 + p1 + 2p2

subject to −12p1 − 12p2 ≥ −6.

This is a convex QP-problem with a globally optimal solution given by p1 = −1,
p2 = −2 and λ = 0, so that x(1) = (−1 − 2)T , λ(1) = 0.

(c) We can see that g(x(1)) = 3 · 25 + 1 − 6 = 70 ≥ 0, so that x(1) is feasible
to (NLP ). In addition, since f(x) is a strictly convex quadratic function and
λ(0) = 0, it follows that x(1) is a global minimizer to f(x) over all IR2. Hence,
since x(1) is feasible to (NLP ), it follows that it is a global minimizer to (NLP ).


