
SF2822 Applied nonlinear optimization, final exam
Friday June 3 2016 8.00–13.00

Brief solutions

1. We have

f(x) =
1

2
(x1 + 1)2 +

1

2
(x2 + 2)2, g(x) = −2(x1 + x2 − 1)2 − (x1 − x2)2 + 10,

∇f(x) =

(
x1 + 1

x2 + 2

)
, ∇g(x) =

(
−6x1 − 2x2 + 4

−2x1 − 6x2 + 4

)
,

∇2f(x) =

(
1 0

0 1

)
, ∇2g(x) =

(
−6 −2

−2 −6

)
.

(a) Insertion of numerical values in the expressions above gives the first QP-problem
according to

min 1
2p

2
1 + 1

2p
2
2 + p1 + 2p2

subject to 4p1 + 4p2 = −8.

This is a convex QP-problem with a globally optimal solution given by

p1 − 4λ = −1,

p2 − 4λ = −2,

4p1 + 4p2 = −8.

The solution is given by p1 = −1/2, p2 = −3/2 and λ = 1/8, which agrees with
the printout from the SQP-solver.

(b) We can see that ∇2f(x) and −∇2g(x) are positive definite, independently of x.
Moreover λ is nonnegative in all iterations. This implies that the solution to
each QP subproblem is optimal also for the case when the equality constraint
is relaxed to a greater than or equal constraint in (NLP ). But, this is a
convex problem since ∇2f(x) and −∇2g(x) are positive definite, independently
of x. Therefore, since the iterates converge to a point that satisfies the first-
order necessary optimality conditions for the relaxed problem, and the relaxed
problem is convex, it is a global minimizer of the relaxed problem and the
original problem.

(c) We would expect quadratic rate of convergence, which is not seen. Therefore,
we find it likely that something is not quite right. The first QP subproblem was
correctly solved, and in this subproblem ∇2g(x) was of no importance, since
λ = 0. We therefore suspect that the evaluation of ∇2g(x) is not correct.

Remark: The iterates in the printout are generated with ∇2g(x)22 = −8, which
is not correct. If∇2g(x)22 is correctly set to -6, the printout would be as follows.

It x1 x2 λ ‖∇f(x)−∇g(x)λ‖ ‖g(x)‖
0 0 0 0 2.2361 8.0000
1 −0.5000 −1.5000 0.1250 1.4577 9.0000
2 −0.2813 −1.0134 0.1004 0.0997 1.0668
3 −0.2382 −0.9444 0.1039 0.0022 0.0258
4 −0.2371 −0.9426 0.1044 7.7122 · 10−6 1.6646 · 10−5

5 −0.2371 −0.9426 0.1044 8.3920 · 10−12 6.9367 · 10−12

6 −0.2371 −0.9426 0.1044 2.4825 · 10−16 0.0000

Now, quadratic rate of convergence is observed.
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2. We may make use of the fact that the problem has only simple bounds.

For convenience, we write the constrainst in the form we normally use, Ax ≥ b, with

A =



1 0 0

0 1 0

0 0 1

−1 0 0

0 −1 0

0 0 −1


, b =



0

0

0

−1

−1

−1


.

Initially, W (0) = {1, 2, 3}, so that three linearly active constraints are active, giving
p(0) = 0, so that x(1) = x(0) = 0. Therefore,


λ
(1)
1

λ
(1)
2

λ
(1)
3

 = Hx(1) + c = c =


−3

1

1

 .

Since λ
(1)
1 < 0, constraint 1 is deleted from the working set. The search direction is

given by

h11p
(2)
1 = −λ(2)1 , i.e. 2p

(2)
1 = 3,

so that p(2) = (3/2 0 0)T . We obtain αmax = 2/3, obtained for constraint 4, so
that α(2) = 2/3, giving x(3) = (1 0 0)T with W (3) = {2, 3, 4}. Again, three linearly
indepent active constraints are in the working set, giving p(3) = 0, so that x(4) = x(3).
The multipliers are given by


−λ(4)4

λ
(4)
2

λ
(4)
3

 = Hx(4) + c =


−1

1

−1

 .

Since λ
(4)
3 < 0, constraint 3 is deleted from the working set. The search direction is

given by

h33p
(4)
3 = −λ(4)3 , i.e. 3p

(4)
3 = 1,

so that p(4) = (0 0 1/3)T . We obtain αmax = 3, so that α(4) = 1, giving x(5) =
(1 0 1/3)T . The multipliers are given by


−λ(5)4

λ
(5)
2

0

 = Hx(5) + c =


−5

3
4
3

0

 ,

so that λ
(5)
2 = 4/3 and λ

(5)
4 = 5

3 . Since λ(5) ≥ 0, x(5) is optimal.
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3. (a) The problem (QP ) is a convex quadratic program.

The primal part of the trajectory is obtained as minimizer to the barrier-
transformed problem

(Pµ) min 1
2x

2
1 + 1

2x
2
2 − µ ln(x1 + x2 + 1)

under the implicit condition that x1 + x2 + 1 > 0. The first-order optimality
conditions of (Pµ) gives

x1(µ)− µ

x1(µ) + x2(µ) + 1
= 0,

x2(µ)− µ

x1(µ) + x2(µ) + 1
= 0.

Subtraction of the second equation from the first gives x1(µ) = x2(µ). Hence,
we may let x1(µ) = x2(µ) = t. The equation then becomes

t− µ

2t+ 1
= 0,

so that

2t2 + t− µ = 0, i.e., t2 +
t

2
− µ

2
= 0, i.e.,

Therefore

t = −1

4
±
√

1

16
+
µ

2
.

The implicit constraint 2t + 1 > 0 implies that the plus sign must be chosen,
so that

x1(µ) = x2(µ) = −1

4
+

√
1

16
+
µ

2
.

The dual part of the trajectory, i.e. λ(µ), is given by λi(µ) = µ/gi(x(µ)),
i = 1, . . . ,m. Here we only have one constraint, so

λ(µ) =
µ

2
(
−1

4 +
√

1
16 + µ

2

)
+ 1

= −1

4
+

√
1

16
+
µ

2
.

(b) As µ → 0 it follows that x(µ) → (0 0)T and λ(µ) → 0. Let x∗ = (0 0)T and
λ∗ = 0. Then x∗ and λ∗ satisfy the first-order optimality conditions of (QP ).
Since (QP ) is a convex problem, this is sufficient for global optimality of (QP ).

(c) We have

λ(µ)− λ∗ = −1

4
+

√
1

16
+
µ

2
= µ+ o(µ).

This is what we would expect, as λ(µ) for an inactive constraint is expected to
be proportional to µ for small values of µ.

4. (See the course material.)

5. (a) We may write the Lagrangian function associated with (NLPu) on the form

L(x, u, λ, η) = f(x, u)− λT g(x, u)− η(u− ũ),
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where λ is the Lagrange multiplier vector associated with the constraint g(x, u) ≥
0 and η is the scalar Lagrange multiplier associated with the constraint u− ũ =
0. The first-order optimality conditions then take the form

∇f(x, u) =
m∑
j=1

λi∇gi(x, u), (1a)

gi(x, u) ≥ 0, i = 1, . . . ,m, (1b)

λi ≥ 0, i = 1, . . . ,m, (1c)

λigi(x, u) = 0, i = 1, . . . ,m, (1d)

∂f(x, u)

∂u
=

m∑
j=1

λi
∂gi(x, u)

∂u
+ η, (1e)

u = ũ, (1f)

where ∇ means taking derivatives with respect to x.

Then, (1a)–(1d) are the optimality conditions of (NLP ), thus satisfied for x =
x̃, λ = λ̃ and u = ũ. In addition, (1f) holds for u = ũ, so that (1e) is satisfied
for η̃ given by

η̃ =
∂f(x̃, ũ)

∂u
−

m∑
j=1

λ̃i
∂gi(x̃, ũ)

∂u
. (2)

(b) From sensititity analysis, we expect that the Lagrange multiplier associated
with the constraint u = ũ predicts the change in optimal objective function
value, so that

z(u) ≈ z(ũ) + η̃(u− ũ) = z(ũ) +

∂f(x̃, ũ)

∂u
−

m∑
j=1

λ̃i
∂gi(x̃, ũ)

∂u

 (u− ũ),

where the expression for η̃ given by (2) has been used. (This could be verified by
the implicit function theorem with the assumptions given here.) Consequently,
AF is not correct. He has missed that the dependence on u in the constraint
functions is also of importance.


