
SF2822 Applied nonlinear optimization, final exam
Thursday June 1 2017 8.00–13.00

Brief solutions

1. (a) The first-order necessary optimality conditions for (QP ) are given by Hx+ c =
0. As H is nonsingular, there is a unique solution given by x1 = (1 1 1)T .

The matrix H is not positive semidefinite, since the leading two-by-two prin-
cipal submatrix is indefinite. With d = (1 − 1 0)T , we obtain dTHd = −4.
Consequently, x1 does not satisfy the second-order necessary optimality condi-
tions to (QP ).

Therefore, there is no point that satisfies the second-order necessary optimality
conditions for (QP ).

(b) The first-order necessary optimality conditions for (EQP ) are given by(
H AT

A 0

)(
x

−λ

)
=

(
−c
b

)

which has unique solution x2 = (4 0 1)T , λ2 = 8. We may for example form a
matrix Z whose columns form a basis for null(A) as

Z =


1 0

0 0

0 1

 ,
for which ZTHZ = I. Hence, x2 satisfies the second-order necessary optimality
conditions fo (EQP ).

(c) Since A has only one row, a local minimizer to (IQP ) has to be a local minimizer
to (QP ) or a local minimizer to (EQP ). Since x1 does not satisfy the second-
order necessary optimality conditions to (QP ), it is not a local mininimizer
to (QP ). Hence, it is not a local minimizer to (IQP ). Since x2 satisfies the
second-order sufficient optimality conditions to (EQP ), it is a local minimizer
to (EQP ). In addition, since λ2 > 0, it is also a local minimizer to (IQP ).

(d) Let q(x) = 1
2x

THx+cTx. With d given as in (1a), it follows that q(x1+αd) and
q(x1−αd) tend to minus infinity as α→∞. Since we have only one constraint,
at least one of x1 + αd and x1 − αd must remain feasible in (IQP ) as α→∞.
We conclude that no global minimizer can exist.

2. The QP subproblem becomes

minimize 1
2p
T∇2

xxL(x(0), λ(0))p+∇f(x(0))Tp

subject to ∇gi(x(0))Tp ≥ −gi(x(0)), i = 1, 2, 3.

Insertion of numerical values gives

min 1
2p

2
1 + 1

2p
2
2

subject to p1 ≥ 1,
p2 ≥ 2,
p1 + p2 ≥ 2.

If we let p(0) denote the optimal solution of the QP subproblem, we obtain x(1) =
x(0) + p(0). We obtain λ(1) as the Lagrange multipliers of the QP subproblem.
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The quadratic program is convex, and it follows by inspection that the optimal
solution is given by p(0) = (1 2)T . The corresponding Lagrange multipliers are given
by λ(1) = (1 2 0)T . Then, p(0) and λ(1) satisfy the first-order necessary optimality
conditions for the QP-subproblem, which by convexity gives a global minimizer.
Therefore the next SQP iterate is given by x(1) = x(0) + p(0) = (1 2)T and λ(1) =
(1 2 0)T .

3. (See the course material.)

4. (a) The problem (QP ) is a convex quadratic program. The primal part of the
trajectory is obtained as minimizer to the barrier-transformed problem

(Pµ) min 1
2x

2
1 + 1

2x
2
2 − µ ln(x1 + x2 − a)

under the implicit condition that x1 + x2 − a > 0. The first-order optimality
conditions of (Pµ) gives

x1(µ)− µ

x1(µ) + x2(µ)− a
= 0,

x2(µ)− µ

x1(µ) + x2(µ)− a
= 0.

These equations are symmetric in x1(µ) and x2(µ). Hence, x1(µ) = x2(µ). This
mean that 2x1(µ)2 − ax1(µ)− µ = 0, from which it follows that

x1(µ) = x2(µ) =
a

4
+

√
a2

16
+
µ

2
.

The plus sign has been chosen in the square root to ensure x1(µ)+x2(µ)−a > 0.

The dual part of the trajectory, i.e. λ(µ), is normally given by λi(µ) = µ/gi(x(µ)),
i = 1, . . . ,m. Here we only have one constraint, so

λ(µ) =
µ

2

(
a
4 +

√
a2

16 + µ
2

)
− a

=
µ

−a
2 + 2

√
a2

16 + µ
2

=
a

4
+

√
a2

16
+
µ

2
.

(b) We consider three cases: (i) a > 0, (ii), a = 0 and (iii) a > 0.

• a > 0. In this case

x1(µ) = x2(µ) = λ(µ) =
a

4
+

√
a2

16
+
µ

2
=
a

4
+
a

4

√
1 +

8µ

a2

As µ→ 0 it follows that x(µ)→ (a/2 a/2)T and λ(µ)→ a/2.
The point x∗ = (a/2 a/2)T together with λ∗ = a/2 satisfies the first-order
optimality conditions of (QP ) and is therefore a global minimizer, since
(QP ) is a convex problem.

• a = 0. In this case

x1(µ) = x2(µ) = λ(µ) =

√
µ

2
.

As µ→ 0 it follows that x(µ)→ (0 0)T and λ(µ)→ 0.
The point x∗ = (0 0)T together with λ∗ = 0 satisfies the first-order opti-
mality conditions of (QP ) and is therefore a global minimizer, since (QP )
is a convex problem.
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• a < 0. In this case

x1(µ) = x2(µ) = λ(µ) =
a

4
+

√
a2

16
+
µ

2
=
a

4
− a

4

√
1 +

8µ

a2

As µ→ 0 it follows that x(µ)→ (0 0)T and λ(µ)→ 0.
The point x∗ = (0 0)T together with λ∗ = 0 satisfies the first-order opti-
mality conditions of (QP ) and is therefore a global minimizer, since (QP )
is a convex problem.

5. (a) The relaxed problem is a non-convex quadratic programming problem. To ob-
tain a lower bound of the original problem we do need to calculate a global
minimizer of this non-convex relaxed problem, which in general is not compu-
tationally tractable.

(b) If we let (SDP ′) be the problem arising as the constraint Y = xxT is added
to (SDP ) we can replace Y with xxT , which by (i) gives trace(HY ) = xTHx.
In addition, if Y = xxT , then yjj = x2j , so that the constraint yjj = xj is
equivalent to x2j = xj . Consequently, (SDP ′) may be written as

(SDP ′)

min cTx+ 1
2x

THx

subject to

(
xxT x

xT 1

)
�
(

0 0

0 0

)
,

x2j = xj , j = 1, . . . , n.

By hint (ii) we can see that the constraint(
xxT x

xT 1

)
�
(

0 0

0 0

)

is always fulfilled. It follows that (SDP ′) may be written as

(SDP ′)
min cTx+ 1

2x
THx

x2j = xj , j = 1, . . . , n.

But x2j = xj if and only if xj ∈ {0, 1}. Hence, (SDP ′) and (P ) are equivalent.


