1. (a) The first-order necessary optimality conditions for $(Q P)$ are given by $H x+c=$ 0 . As H is nonsingular, there is a unique solution given by $x^{1}=\left(\begin{array}{ll}1 & 1\end{array}\right)^{T}$.
The matrix H is not positive semidefinite, since the leading two-by-two principal submatrix is indefinite. With $d=\left(\begin{array}{lll}1 & -1 & 0\end{array}\right)^{T}$, we obtain $d^{T} H d=-4$. Consequently, x^{1} does not satisfy the second-order necessary optimality conditions to $(Q P)$.
Therefore, there is no point that satisfies the second-order necessary optimality conditions for $(Q P)$.
(b) The first-order necessary optimality conditions for $(E Q P)$ are given by

$$
\left(\begin{array}{cc}
H & A^{T} \\
A & 0
\end{array}\right)\binom{x}{-\lambda}=\binom{-c}{b}
$$

which has unique solution $x^{2}=\left(\begin{array}{ll}4 & 0\end{array}\right)^{T}, \lambda^{2}=8$. We may for example form a matrix Z whose columns form a basis for $\operatorname{null}(A)$ as

$$
Z=\left(\begin{array}{ll}
1 & 0 \\
0 & 0 \\
0 & 1
\end{array}\right)
$$

for which $Z^{T} H Z=I$. Hence, x^{2} satisfies the second-order necessary optimality conditions fo (EQP).
(c) Since A has only one row, a local minimizer to $(I Q P)$ has to be a local minimizer to $(Q P)$ or a local minimizer to $(E Q P)$. Since x^{1} does not satisfy the secondorder necessary optimality conditions to $(Q P)$, it is not a local mininimizer to $(Q P)$. Hence, it is not a local minimizer to $(I Q P)$. Since x^{2} satisfies the second-order sufficient optimality conditions to $(E Q P)$, it is a local minimizer to $(E Q P)$. In addition, since $\lambda^{2}>0$, it is also a local minimizer to (IQP).
(d) Let $q(x)=\frac{1}{2} x^{T} H x+c^{T} x$. With d given as in (1a), it follows that $q\left(x^{1}+\alpha d\right)$ and $q\left(x^{1}-\alpha d\right)$ tend to minus infinity as $\alpha \rightarrow \infty$. Since we have only one constraint, at least one of $x^{1}+\alpha d$ and $x^{1}-\alpha d$ must remain feasible in $(I Q P)$ as $\alpha \rightarrow \infty$. We conclude that no global minimizer can exist.
2. The QP subproblem becomes

$$
\begin{array}{ll}
\operatorname{minimize} & \frac{1}{2} p^{T} \nabla_{x x}^{2} \mathcal{L}\left(x^{(0)}, \lambda^{(0)}\right) p+\nabla f\left(x^{(0)}\right)^{T} p \\
\text { subject to } & \nabla g_{i}\left(x^{(0)}\right)^{T} p \geq-g_{i}\left(x^{(0)}\right), \quad i=1,2,3
\end{array}
$$

Insertion of numerical values gives

$$
\begin{array}{ll}
\min & \frac{1}{2} p_{1}^{2}+\frac{1}{2} p_{2}^{2} \\
\text { subject to } & p_{1} \geq 1 \\
& p_{2} \geq 2 \\
& p_{1}+p_{2} \geq 2
\end{array}
$$

If we let $p^{(0)}$ denote the optimal solution of the QP subproblem, we obtain $x^{(1)}=$ $x^{(0)}+p^{(0)}$. We obtain $\lambda^{(1)}$ as the Lagrange multipliers of the QP subproblem.

The quadratic program is convex, and it follows by inspection that the optimal solution is given by $p^{(0)}=\left(\begin{array}{ll}1 & 2\end{array}\right)^{T}$. The corresponding Lagrange multipliers are given by $\lambda^{(1)}=\left(\begin{array}{lll}1 & 2 & 0\end{array}\right)^{T}$. Then, $p^{(0)}$ and $\lambda^{(1)}$ satisfy the first-order necessary optimality conditions for the QP-subproblem, which by convexity gives a global minimizer. Therefore the next SQP iterate is given by $x^{(1)}=x^{(0)}+p^{(0)}=\left(\begin{array}{ll}1 & 2\end{array}\right)^{T}$ and $\lambda^{(1)}=$ $(120)^{T}$.
3. (See the course material.)
4. (a) The problem $(Q P)$ is a convex quadratic program. The primal part of the trajectory is obtained as minimizer to the barrier-transformed problem

$$
\left(P_{\mu}\right) \quad \min \quad \frac{1}{2} x_{1}^{2}+\frac{1}{2} x_{2}^{2}-\mu \ln \left(x_{1}+x_{2}-a\right)
$$

under the implicit condition that $x_{1}+x_{2}-a>0$. The first-order optimality conditions of $\left(P_{\mu}\right)$ gives

$$
\begin{aligned}
& x_{1}(\mu)-\frac{\mu}{x_{1}(\mu)+x_{2}(\mu)-a}=0, \\
& x_{2}(\mu)-\frac{\mu}{x_{1}(\mu)+x_{2}(\mu)-a}=0 .
\end{aligned}
$$

These equations are symmetric in $x_{1}(\mu)$ and $x_{2}(\mu)$. Hence, $x_{1}(\mu)=x_{2}(\mu)$. This mean that $2 x_{1}(\mu)^{2}-a x_{1}(\mu)-\mu=0$, from which it follows that

$$
x_{1}(\mu)=x_{2}(\mu)=\frac{a}{4}+\sqrt{\frac{a^{2}}{16}+\frac{\mu}{2}} .
$$

The plus sign has been chosen in the square root to ensure $x_{1}(\mu)+x_{2}(\mu)-a>0$. The dual part of the trajectory, i.e. $\lambda(\mu)$, is normally given by $\lambda_{i}(\mu)=\mu / g_{i}(x(\mu))$, $i=1, \ldots, m$. Here we only have one constraint, so

$$
\lambda(\mu)=\frac{\mu}{2\left(\frac{a}{4}+\sqrt{\frac{a^{2}}{16}+\frac{\mu}{2}}\right)-a}=\frac{\mu}{-\frac{a}{2}+2 \sqrt{\frac{a^{2}}{16}+\frac{\mu}{2}}}=\frac{a}{4}+\sqrt{\frac{a^{2}}{16}+\frac{\mu}{2}} .
$$

(b) We consider three cases: (i) $a>0$, (ii), $a=0$ and (iii) $a>0$.

- $a>0$. In this case

$$
x_{1}(\mu)=x_{2}(\mu)=\lambda(\mu)=\frac{a}{4}+\sqrt{\frac{a^{2}}{16}+\frac{\mu}{2}}=\frac{a}{4}+\frac{a}{4} \sqrt{1+\frac{8 \mu}{a^{2}}}
$$

As $\mu \rightarrow 0$ it follows that $x(\mu) \rightarrow(a / 2 a / 2)^{T}$ and $\lambda(\mu) \rightarrow a / 2$.
The point $x^{*}=(a / 2 a / 2)^{T}$ together with $\lambda^{*}=a / 2$ satisfies the first-order optimality conditions of $(Q P)$ and is therefore a global minimizer, since $(Q P)$ is a convex problem.

- $a=0$. In this case

$$
x_{1}(\mu)=x_{2}(\mu)=\lambda(\mu)=\sqrt{\frac{\mu}{2}}
$$

As $\mu \rightarrow 0$ it follows that $x(\mu) \rightarrow(00)^{T}$ and $\lambda(\mu) \rightarrow 0$.
The point $x^{*}=\left(\begin{array}{ll}0 & 0\end{array}\right)^{T}$ together with $\lambda^{*}=0$ satisfies the first-order optimality conditions of $(Q P)$ and is therefore a global minimizer, since $(Q P)$ is a convex problem.

- $a<0$. In this case

$$
x_{1}(\mu)=x_{2}(\mu)=\lambda(\mu)=\frac{a}{4}+\sqrt{\frac{a^{2}}{16}+\frac{\mu}{2}}=\frac{a}{4}-\frac{a}{4} \sqrt{1+\frac{8 \mu}{a^{2}}}
$$

As $\mu \rightarrow 0$ it follows that $x(\mu) \rightarrow(00)^{T}$ and $\lambda(\mu) \rightarrow 0$.
The point $x^{*}=\left(\begin{array}{ll}0 & 0\end{array}\right)^{T}$ together with $\lambda^{*}=0$ satisfies the first-order optimality conditions of $(Q P)$ and is therefore a global minimizer, since $(Q P)$ is a convex problem.
5. (a) The relaxed problem is a non-convex quadratic programming problem. To obtain a lower bound of the original problem we do need to calculate a global minimizer of this non-convex relaxed problem, which in general is not computationally tractable.
(b) If we let $\left(S D P^{\prime}\right)$ be the problem arising as the constraint $Y=x x^{T}$ is added to $(S D P)$ we can replace Y with $x x^{T}$, which by (i) gives $\operatorname{trace}(H Y)=x^{T} H x$. In addition, if $Y=x x^{T}$, then $y_{j j}=x_{j}^{2}$, so that the constraint $y_{j j}=x_{j}$ is equivalent to $x_{j}^{2}=x_{j}$. Consequently, $\left(S D P^{\prime}\right)$ may be written as

$$
\begin{aligned}
& \text { min } c^{T} x+\frac{1}{2} x^{T} H x \\
&\left(S D P^{\prime}\right) \quad \text { subject to } \quad\left(\begin{array}{cc}
x x^{T} & x \\
x^{T} & 1
\end{array}\right) \succeq\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right), \\
& x_{j}^{2}=x_{j}, \quad j=1, \ldots, n .
\end{aligned}
$$

By hint (ii) we can see that the constraint

$$
\left(\begin{array}{cc}
x x^{T} & x \\
x^{T} & 1
\end{array}\right) \succeq\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)
$$

is always fulfilled. It follows that ($S D P^{\prime}$) may be written as

$$
\begin{align*}
\min & c^{T} x+\frac{1}{2} x^{T} H x \\
& x_{j}^{2}=x_{j}, \quad j=1, \ldots, n
\end{align*}
$$

But $x_{j}^{2}=x_{j}$ if and only if $x_{j} \in\{0,1\}$. Hence, $\left(S D P^{\prime}\right)$ and (P) are equivalent.

