1. As $g_{3}\left(x^{*}\right)<0$ we must have $g_{3}(x) \leq 0$.

Since $g_{1}\left(x^{*}\right)=0, g_{2}\left(x^{*}\right)=0$, with $\nabla g_{1}\left(x^{*}\right)$ and $\nabla g_{2}\left(x^{*}\right)$ linearly independent, it follows that x^{*} is a regular point. Hence, the first-order necessary optimality conditions must hold. We therefore try to find λ_{1} and λ_{2} such that

$$
\left(\begin{array}{r}
2 \\
-3 \\
1
\end{array}\right)=\left(\begin{array}{r}
1 \\
-1 \\
0
\end{array}\right) \lambda_{1}+\left(\begin{array}{r}
0 \\
1 \\
-1
\end{array}\right) \lambda_{2} .
$$

There is a unique solution given by $\lambda_{1}=2$ and $\lambda_{2}=-1$. Since $\lambda_{1}>0$ and $\lambda_{2}<0$, we must have $g_{1}(x) \geq 0$ and $g_{2}(x) \leq 0$ for the first-order necessary optimality conditions to hold.

We now investigate whether this choice gives a local minimizer. The Jacobian of the active constraints at x^{*} is given by

$$
\left(\begin{array}{rrr}
1 & -1 & 0 \\
0 & 1 & -1
\end{array}\right)
$$

As the first two columns form an invertible matrix, we may for example obtain Z from

$$
Z=\left(-\left(\begin{array}{rr}
1 & -1 \\
0 & 1
\end{array}\right)^{-1}\binom{0}{-1}\right)=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)
$$

Hence,

$$
\begin{aligned}
Z^{T}\left(\nabla^{2} f\left(x^{*}\right)-\lambda_{1} \nabla^{2} g_{1}\left(x^{*}\right)-\lambda_{2} \nabla^{2} g_{2}\left(x^{*}\right)\right) Z & =\left(\begin{array}{lll}
1 & 1 & 1
\end{array}\right)\left(\begin{array}{rrr}
0 & 0 & 0 \\
0 & 4 & 0 \\
0 & 0 & -1
\end{array}\right)\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) \\
& =3,
\end{aligned}
$$

which is a positive definite matrix. Therefore, x^{*} is a regular point at which strict complementarity holds, and the second-order sufficient optimality hold. Therefore, x^{*} is a local minimizer.
We conclude that x^{*} becomes a local minimizer to $(N L P)$ for the choice $g_{1}(x) \geq 0$, $g_{2}(x) \leq 0$ and $g_{3}(x) \leq 0$.
2. No constraints are active at the initial point. Hence, the working set is empty, i.e., $\mathcal{W}=\emptyset$. Since $H=I$ and $c=0$, we obtain $p^{(0)}=-\left(H x^{(0)}+c\right)=-x^{(0)}$. The maximum steplength is given by

$$
\alpha_{\max }=\min _{i: a_{i}^{T} p^{(0)}<0} \frac{a_{i}^{T} x^{(0)}-b_{i}}{-a_{i}^{T} p^{(0)}}=\frac{1}{4}
$$

where the minimum is attained for $i=1$. Consequently, $\alpha^{(0)}=1 / 4$ so that

$$
x^{(1)}=x^{(0)}+\alpha^{(0)} p^{(0)}=\binom{0}{4}+\frac{1}{4}\binom{0}{-4}=\binom{0}{3},
$$

with $\mathcal{W}=\{1\}$. The solution to the corresponding equality-constrained quadratic program is given by

$$
\left(\begin{array}{ccc}
1 & 0 & 2 \\
0 & 1 & 1 \\
2 & 1 & 0
\end{array}\right)\left(\begin{array}{r}
p_{1}^{(1)} \\
p_{2}^{(1)} \\
-\lambda_{1}^{(2)}
\end{array}\right)=-\left(\begin{array}{l}
0 \\
3 \\
0
\end{array}\right)
$$

We obtain

$$
p^{(1)}=\left(\begin{array}{ll}
\frac{6}{5} & -\frac{12}{5}
\end{array}\right)^{T}
$$

The maximum steplength is given by

$$
\alpha_{\max }=\min _{i: a_{i}^{T} p^{(0)}<0} \frac{a_{i}^{T} x^{(0)}-b_{i}}{-a_{i}^{T} p^{(0)}}=\frac{5}{6}
$$

where the minimum is attained for $i=2$. Consequently, $\alpha^{(1)}=5 / 6$ so that

$$
x^{(2)}=x^{(1)}+\alpha^{(1)} p^{(1)}=\binom{0}{3}+\frac{5}{6}\binom{\frac{6}{5}}{-\frac{12}{5}}=\binom{1}{1},
$$

with $\mathcal{W}=\{1,2\}$. The solution to the corresponding equality-constrained quadratic program is given by

$$
\left(\begin{array}{llll}
1 & 0 & 1 & 2 \\
0 & 1 & 2 & 1 \\
1 & 2 & 0 & 0 \\
2 & 1 & 0 & 0
\end{array}\right)\left(\begin{array}{r}
p_{1}^{(2)} \\
p_{2}^{(2)} \\
-\lambda_{1}^{(3)} \\
-\lambda_{2}^{(3)}
\end{array}\right)=-\left(\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right)
$$

We obtain

$$
p^{(2)}=\left(\begin{array}{ll}
0 & 0
\end{array}\right)^{T}, \quad \lambda^{(3)}=\left(\begin{array}{cc}
\frac{1}{3} & \frac{1}{3}
\end{array}\right)^{T} .
$$

As $p^{(2)}=0$ and $\lambda^{(3)} \geq 0$, the optimal solution has been found. Hence, $x^{(2)}$ is optimal.
3. We have

$$
\begin{array}{rlrl}
f(x) & =2\left(x_{1}-2\right)^{2}+\left(x_{2}-1\right)^{2} & g(x) & =1-x_{1}^{2}-x_{2}^{2} \geq 0 \\
\nabla f(x) & =\binom{4\left(x_{1}-2\right)}{2\left(x_{2}-1\right)}, & \nabla g(x) & =\binom{-2 x_{1}}{-2 x_{2}}, \\
\nabla^{2} f(x) & =\left(\begin{array}{ll}
4 & 0 \\
0 & 2
\end{array}\right), & \nabla^{2} g(x) & =\left(\begin{array}{rr}
-2 & 0 \\
0 & -2
\end{array}\right) .
\end{array}
$$

The first QP-subproblem becomes

$$
\begin{array}{ll}
\operatorname{minimize} & \frac{1}{2} p^{T} \nabla_{x x}^{2} \mathcal{L}\left(x^{(0)}, \lambda^{(0)}\right) p+\nabla f\left(x^{(0)}\right)^{T} p \\
\text { subject to } & \nabla g\left(x^{(0)}\right)^{T} p \geq-g\left(x^{(0)}\right.
\end{array}
$$

Insertion of numerical values gives

$$
\begin{array}{ll}
\operatorname{minimize} & 2 p_{1}^{2}+p_{2}^{2} \\
\text { subject to } & -4 p_{1}-2 p_{2} \geq 2
\end{array}
$$

We now utilize the fact that the subproblem is of dimension two with only one constraint. The subproblem is convex, since it is a quadratic program with positive definite Hessian. The constraint must be active, since the unconstrained minimizer $p=0$ is infeasible. Hence, we may let $p_{1}=-1 / 2-p_{2} / 2$ and minimize

$$
2\left(\frac{1}{2}+\frac{p_{2}}{2}\right)^{2}+p_{2}^{2}
$$

Setting the derivative to zero gives

$$
0=2\left(\frac{1}{2}+\frac{p_{2}}{2}\right)+2 p_{2}=1+3 p_{2}
$$

Hence, $p_{2}=-1 / 3$, which gives $p_{1}=-1 / 3$. Evaluating the gradient at the optimal point of the quadratic program gives

$$
\binom{-\frac{4}{3}}{-\frac{2}{3}}=\binom{-4}{-2} \lambda
$$

so that $\lambda=1 / 3$. Consequently, we obtain

$$
x^{(1)}=\binom{2}{1}+\binom{-\frac{1}{3}}{-\frac{1}{3}}=\binom{\frac{5}{3}}{\frac{2}{3}}, \quad \lambda^{(1)}=\frac{1}{3} .
$$

4. (See the course material.)
5. (a) Problem ($N L P$) has the form which we use in the course. The objective function is convex and the constraint functions of the inequality constraints are concave. Hence, $(N L P)$ is a convex problem.
(b) We see by inspection that $x_{1}^{*}=0$ and $x_{2}^{*}=\sqrt{\epsilon}$ with both constraints active.

The Lagrangian function for $(N L P)$ is given by

$$
\mathcal{L}(x, \lambda)=-x_{2}-\left(1+\epsilon-\left(x_{1}-1\right)^{2}-x_{2}^{2}\right) \lambda_{1}-\left(1+\epsilon-\left(x_{1}+1\right)^{2}-x_{2}^{2}\right) \lambda_{2}
$$

so that

$$
\nabla_{x} \mathcal{L}(x, \lambda)=\binom{2\left(x_{1}-1\right) \lambda_{1}+2\left(x_{1}+1\right) \lambda_{2}}{-1+2 x_{2} \lambda_{1}+2 x_{2} \lambda_{2}}
$$

Evaluation at x^{*} gives

$$
\nabla_{x} \mathcal{L}\left(x^{*}, \lambda\right)=\binom{-2 \lambda_{1}+2 \lambda_{2}}{-1+2 \sqrt{\epsilon} \lambda_{1}+2 \sqrt{\epsilon} \lambda_{2}}
$$

The Lagrange multiplier vector λ^{*} is given by $\nabla_{x} \mathcal{L}\left(x^{*}, \lambda^{*}\right)=0$, i.e.,

$$
\binom{-2 \lambda_{1}^{*}+2 \lambda_{2}^{*}}{-1+2 \sqrt{\epsilon} \lambda_{1}^{*}+2 \sqrt{\epsilon} \lambda_{2}^{*}}=\binom{0}{0}
$$

For $\epsilon>0$, the unique solution is given by $\lambda_{1}^{*}=\lambda_{2}^{*}=1 /(4 \sqrt{\epsilon})$. Consequently,

$$
x^{*}=\binom{0}{\sqrt{\epsilon}}, \quad \lambda^{*}=\binom{\frac{1}{4 \sqrt{\epsilon}}}{\frac{1}{4 \sqrt{\epsilon}}} .
$$

(c) We see that

$$
x^{*} \rightarrow\binom{0}{0}, \quad \lambda^{*} \rightarrow\binom{\infty}{\infty}
$$

when $\epsilon \rightarrow 0$.
The Jacobian of the constraints is given by

$$
A(x)=\binom{\nabla g_{1}(x)^{T}}{\nabla g_{2}(x)^{T}}=\left(\begin{array}{ll}
-2\left(x_{1}-1\right) & -2 x_{2} \\
-2\left(x_{1}+1\right) & -2 x_{2}
\end{array}\right)
$$

so that

$$
A\left(x^{*}\right)=\left(\begin{array}{rr}
2 & -2 \sqrt{\epsilon} \\
-2 & -2 \sqrt{\epsilon}
\end{array}\right)
$$

The rows of $A\left(x^{*}\right)$ are linearly independent for any $\epsilon>0$ but they become closer and closer to linearly dependent as $\epsilon \rightarrow 0$ so that for $\epsilon=0$ they are linearly dependent.
This is reflected in the Lagrange multipliers becoming larger and larger as $\epsilon \rightarrow 0$ so that for $\epsilon=0$ they do not exist.

