
SF2822 Applied nonlinear optimization, final exam
Thursday May 31 2018 8.00–13.00

Brief solutions

1. (a) This claim is true.

The output of “active=find(g<sqrt(eps))” shows that constraints 12, 17
and 21 are active at x∗.
In addition, the comand “rank(A(active,:))” gives 3, showing that the con-
straint gradients of the active constraints are linearly independents, i.e., x∗ is
a regular point.

(b) This claim is true.

The output of “norm(gradf-A’*lambdastar)” is of the order of machine pre-
cision, i.e., ∇f(x∗)−A(x∗)Tλ∗ is numerically zero.

In addition, the output of “[g lambdastar]” shows that g(x∗) ≥ 0, λ∗ ≥ 0
and gi(x

∗)λ∗i = 0, i = 1, . . . , 24. Consequently, x∗ together with λ∗ satisfy the
first-order necessary optimality conditions.

(c) This claim is false.

The output of “eig(Z’*HessL*Z)” shows that ZT∇2
xxL(x∗, λ∗)Z has two neg-

ative eigenvalues, hence contradicting the required positive semidefiniteness,
where Z is a matrix whose columns form a basis for the nullspace of the Jaco-
bian of the active constraints.

(d) This claim is false.

The second-order sufficient optimality conditions require ZT∇2
xxL(x∗, λ∗)Z pos-

itive definite, and they cannot hold since the second-order necessary conditions
do not hold.

(e) This claim is false.

Since x∗ is a regular point at which the second-order necessary conditions do
not hold, it cannot be a local minimizer. Therefore, it cannot be a global
minimizer.

2. No constraint is in the working set at the initial point, i.e., W = ∅. With H = I
and c = 0 we obtain

Hp(0) = −(Hx(0) + c).

Insertion of numeric values gives

(
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We obtain

p(0) =
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.
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where the minimium is attained for i = 3. Consequently, α(0) = 1/3 so that

x(1) = x(0) + α(0)p(0) =

(
15

3

)
+

1

3

(
−15

−3

)
=

(
10

2

)
,

with W = {3}. The solution to the corresponding equality-constrained quadratic
progam is given by
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We obtain

p(1) =
(
−10 0

)T
, λ(2) =

(
0 0 2

)T
.

The maximum steplength is given by

αmax = min
i:aTi p

(1)<0

aTi x
(1) − bi
−aTi p(1)

=
3

5
,

where the minimium is attained for i = 1. Consequently, α(1) = 3/5 so that

x(2) = x(1) + α(1)p(1) =

(
0

2

)
+

3

5

(
−10

−2

)
=

(
4

2

)
,

with W = {1, 3}. The solution to the corresponding equality-constrained quadratic
progam is given by

1 0 1 0

0 1 1 1

1 1 0 0

0 1 0 0
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We obtain

p(2) =
(

0 0
)T

, λ(3) =
(

4 0 −2
)T

.

As p(2) = 0, it follows that x(3) = x(2) and the corresponding equality-constrained

problem has been solved. However, since λ
(3)
3 < 0, constraint 3 is deleted so that

W = {1}. The solution to the corresponding equality-constrained quadratic progam
is given by


1 0 1

0 1 1

1 1 0
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We obtain

p(3) =
(
−1 1

)T
, λ(4) =

(
3 0 0

)T
.

The maximum steplength is given by

αmax = min
i:aTi p

(3)<0

aTi x
(3) − bi
−aTi p(3)

= 4,

where the minimium is attained for i = 2. Since αmax > 1, we let α(3) = 1 so that

x(4) = x(3) + p(3) =

(
4

2

)
+

(
−1

1

)
=

(
3

3

)
.

Since λ(4) ≥ 0, the optimal solution has been found.

3. (See the course material.)

4. (a) In an interior method, we need to ensure that the constraint, on which the
barrier transformation is applied, is satisfied with strict inequality. Hence, if
the barrier is applied on g(x) ≥ 0, we must that g(x(k)) > 0 for all iterates k.
Since g(x(0)) = −2 < 0, some reformulation is needed.

(b) The Newton step ∆x, ∆s, ∆λ is given by
∇2

xxL(x, λ) 0 −A(x)T

A(x) −I 0

0 Λ S



∆x

∆s

∆λ

 = −


∇f(x)−A(x)Tλ

g(x)− s
Sλ− µe

 ,
where the matrix and righ-hand side is evaluated at the particular iterate x, s,
λ.

In our case we get

L(x, λ) = 1
2x

2
1 + x2 − λ(−x1 − x22 + 1),

so that

∇2
xxL(x, λ) =

(
1 0

0 2λ

)
, ∇f(x) =

(
x1

1

)
,

A(x) =
(
−1 −2x2

)
, g(x) = −x1 − x22 + 1.

The Newton system then becomes
1 0 0 1

0 2λ 0 2x2

−1 −2x2 −1 0

0 0 λ s




∆x1

∆x2

∆s

∆λ

 = −


x1 + λ

1 + 2x2λ

−x1 − x22 + 1− s
sλ− µ

 .
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The initial value of s should be strictly positive. For example, let s(0) = 1/2.
Then, for the first iteration we obtain

1 0 0 1

0 4 0 2

−1 −2 −1 0

0 0 2 1
2
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2

∆s(0)

∆λ(0)
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5
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2

0

 .

(c) The next iterate is given by x(1) = x(0) + α(0)∆x
(0)
1 , s(1) = s(0) + α(0)∆s(0),

λ(1) = λ(0) + α(0)∆λ(0), where α(0) is given by some approximate linesearch.
The steplength α(0) must be chosen such that s(0) + α(0)∆s(0) > 0 and λ(0) +
α(0)∆λ(0) > 0.

5. (a) The QP subproblem becomes

minimize 1
2p

T∇2
xxL(x(0), λ(0))p+∇f(x(0))Tp

subject to A(x(0))p ≥ −g(x(0)).

Insertion of numerical values gives

min 2p21 + 2p22 − p2
subject to 2p1 − 2p2 ≥ 1,

−2p1 − 2p2 ≥ 1.

If we let p(0) denote the optimal solution of the QP subproblem, we obtain x(1) =
x(0) + p(0). We obtain λ(1) as the Lagrange multipliers of the QP subproblem.

The quadratic program is convex. By symmetry, we guess that p
(0)
1 = 0, which

gives p
(0)
2 = −1/2. If this is correct, there must exist nonnegative Lagrange

multipliers λ(1) such that 4p
(0)
1

4p
(0)
2 − 1

 =

(
2 −2

−2 −2

) λ
(0)
1

λ
(0)
2

 .
There is a unique solution given by λ(1) = (3/4 3/4)T , which is nonnegative.
Our guess was therefore correct. Finally, x(1) = x(0) + p(0) = (0 1/2)T .

(b) Linearization of the objective function in (NLP ′) gives

f(x(k) + p) +MeT(u(k) + q) ≈ f(x(k)) +∇f(x(k))Tp+MeTu(k) +MeTq.

Since u only appears linearly in (NLP ′), the quadratic part of the objective
function in (QP ′) is identical to that in the objective function of the QP sub-
problem associated with (NLP ). The objective function therefore becomes

1
2p

T∇2
xxL(x(k), λ(k))p+∇f(x(k))Tp+MeTq.

Setting a linearization of the constraints feasible in (NLP ′) gives

g(x(k) + p) + u(k) + q ≈ g(x(k)) +A(x(k)p+ u(k) + q ≥ 0,

u(k) + q ≥ 0.

The QP subproblem associated with (NLP ′) at iteration k may consequently
be written as

(QP ′)

minimize 1
2p

T∇2
xxL(x(k), λ(k))p+∇f(x(k))Tp+MeTq

subject to A(x(k))p+ q ≥ −g(x(k))− u(k),
q ≥ −u(k).
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If in addition u(k) = 0, (QP ′) takes the form

(QP ′)

minimize 1
2p

T∇2
xxL(x(k), λ(k))p+∇f(x(k))Tp+MeTq

subject to A(x(k))p+ q ≥ −g(x(k)),
q ≥ 0.

The first-order necessary optimality conditions for (QP ′) then become

∇2
xxL(x(k), λ(k))p+∇f(x(k)) = A(x(k))Tλ,

Me = λ+ η,

A(x(k))p+ q ≥ −g(x(k)),

λ ≥ 0,

(A(x(k))p+ q + g(x(k)))Tλ = 0,

q ≥ 0,

η ≥ 0,

qTη = 0.

Now assume that Me− λ > 0. Then, η > 0, since η = Me− λ. But then, the
complementarity condition qTη = 0 and nonnegativity of q gives q = 0. Then,
the optimality conditions take the form

∇2
xxL(x(k), λ(k))p+∇f(x(k)) = A(x(k))Tλ,

A(x(k))p ≥ −g(x(k)),

λ ≥ 0,

(A(x(k))p+ g(x(k)))Tλ = 0,

which are exactly the optimality conditions of the QP subproblem associated
with (NLP ). Therefore, based on the optimality conditions we conclude that
q(k) = 0 in addition to p(k) and λ(k+1) being optimal solution and Lagrange
multipliers respectively of the corresponding QP subproblem associated with
(NLP ).


