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ot Brief solutions

1.  (a) This claim is true.

The output of “active=find(g<sqrt(eps))” shows that constraints 1 and 3
are active at .

In addition, the command “rank(A(active,:))” gives 2, showing that the
constraint gradients of the active constraints are linearly independents, i.e., 2
is a regular point.

(b) This claim is true.

The output of “norm(gradf-A’+*lambdastar)” is of the order of machine pre-
cision, i.e., Vf(2*) — A(z*)TX* is numerically zero.

In addition, the output of “[g lambdastar]” shows that g(z*) > 0, X* > 0
and g;(z*)Xf =0, i =1,...,24. Consequently, 2* together with \* satisfy the
first-order necessary optimality conditions.

(c¢) This claim is true.

The additional requirement to first-order necessary optimality conditions is that
the reduced Hessian ZTV?WLI(:U*, X)Z is positive semidefinite. The output of
“eig(Z’*HessL*Z)” shows that Z7V2 L(z", X*)Z has all eigenvalues nonneg-
ative, hence being positive semidefinite, where Z is a matrix whose columns
form a basis for the nullspace of the Jacobian of the active constraints.

(d) This claim is false.

We have strict complementarity. Hence, in addition to existence of Lagrange
multipliers, the second-order sufficient optimality conditions require the reduced
Hessian ZTV2,L(z", X*)Z positive definite. This is not true, since one eigen-
value of ZTV2_ L(x*,X*)Z is zero.

(e) This claim is true.

Since constraints 6,7,...,24 are inactive at z*, they may be omitted from

the problem without affecting the local optimality conditions. The resulting
problem is then convex, since f and —¢;, ¢ = 1,...,5, are convex on IR’.
Therefore, first-order necessary optimality conditions are sufficient to ensure
global minimality.

2. If the problem is put on the form

minimize  f(x)

subject to g(x) >0, =€ IR?,

we obtain
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With 2(9 = (2 )T and A(©) = (1 0 0)7 the first QP-problem becomes

minimize <p12p2)<[1) 2><§;>+(4 —2)@;)

1
2
1
2 Y41 0
subject to 10 < )Z —2
0 1 b2 7%

The optimal solution of the QP-problem is given by the feasible point which is
closest, in 2-norm, to (—4 2)7. This may for example be solved graphically:
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The solution is p(® = (=2 2)” with constraint 2 active. The Lagrange multiplier
)\él) of the active constraint is given by

(3)-(2)-()e

ie., )\gl) = 2. Thus, we have A() = (0 2 0)7, and =V is given by (1) = £(0) ) =
(05/2)T.

3. (a) The problem (QP) is a convex quadratic program. The primal part of the
trajectory is obtained as minimizer to the barrier-transformed problem

(Py) min 1z} + 123 — pln(z; — 1)

under the implicit condition that 1 + 1 > 0. The first-order optimality condi-
tions of (P,) gives

H _
w1 (p) — ) =1 0,
za(p) = 0.

Since (QP) is a convex problem, (P,) is an unconstrained convex problem,
taking into account the implicit constraint 1 — 1 > 0. Therefore, the first-
order necessary optimality conditions are sufficient for global optimality.

The first-order optimality conditions give xo(p) = 0, and x1(u) is given by
2t(p) — z1(p) —p =0,
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ie.,

1 1

where the plus sign has been chosen for the square root to enforce x1(p)—1 > 0.

The dual part of the trajectory, i.e. A(u), is normally given by \; (1) = p/gi(x(p)),
i=1,...,m. Here we only have one constraint, so

p Iz 1 1
Alp) = = —==5t\tH

As pu — 0 it follows that z(x) — (1 0)7 and A(u) — 1. Let 2* = (1 0)T and
N* = 1. Then 2* and X* satisfy the first-order optimality conditions of (QP).
Since (QP) is a convex problem, this is sufficient for global optimality of (QP).

We have

1 1
n1(n) = AG) = 5+ T 2 =N and () = 0 =0

Therefore, ||z(u) — 2" |2 = | A(1) — A*||2, and it suffices to consider ||z (u) —2*||2.
The expression from above gives

1 1 1 1
o) = a%la = —5 4/ S0 = 2+ VT T= o).

This is as expected. We would expect ||z(u) — 2*[]2 and [|A(1) — A¥||2 to be of
the order p near an optimal solution where regularity holds.

We may write A = (I —e), with e = (111 1)”. Then, a matrix whose columns
form a basis for the nullspace of A is givenby Z = (—(—e?) )T = (1 1 1 1 1)T.

The step to the minimizer of the new problem can be written as p = Zpy,
where

ZTH Zpy; = —ZT(Hz* + ¢+ 20e,).

As 2 is optimal to the original problem we have ZT(Haz* + ¢) = 0, so that

ZTHZpz; = —20Z%e;. Insertion of numerical values gives 10p, = —20, i.e.,
pz = —2. Hence, if the optimal solution to the new problem is denoted by z,
we obtain
5 1 3
4 1 2
T=a"+2Zp.=|3|-2|1|=]| 1
2 1 0
1 1 -1

As T5 < 0, T is not feasible to the third problem. When finding Z, we computed
p as the first step in an active-set method for solving the third problem. The
maximum steplength is given by the maximum « such that 2* + ap > 0. We
obtain & = 1/2. The new point, Z, becomes Z = 2 +1/2p = (4 32 1 0)T. This
point is in fact optimal, as the Lagrange multiplier of an added constraint will
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become positive. If the constraint x5 > 0 is added as a fifth constraint, this can
be verified algebraically by solving

20 1 0 0 0 O A
0 1 0 0 0 A2
Hi4+c=| 2|=] o o 1 0 o0 Xs |,
-5 0 0 0 1 0 A
-8 -1 -1 -1 -1 1 A5

to obtain the Lagrange multipliers. We obtain M o= 20, Ay = 1, A = 2,
Ay = =5, A5 = 10. As A5 > 0, the solution is optimal.

5. (See the course material.)



