
SF2822 Applied nonlinear optimization, final exam
Wednesday August 15 2018 8.00–13.00

Brief solutions

1. (a) This claim is true.

The output of “active=find(g<sqrt(eps))” shows that constraints 1 and 3
are active at x∗.
In addition, the command “rank(A(active,:))” gives 2, showing that the
constraint gradients of the active constraints are linearly independents, i.e., x∗
is a regular point.

(b) This claim is true.

The output of “norm(gradf-A’*lambdastar)” is of the order of machine pre-
cision, i.e., ∇f(x∗)−A(x∗)Tλ∗ is numerically zero.

In addition, the output of “[g lambdastar]” shows that g(x∗) ≥ 0, λ∗ ≥ 0
and gi(x

∗)λ∗i = 0, i = 1, . . . , 24. Consequently, x∗ together with λ∗ satisfy the
first-order necessary optimality conditions.

(c) This claim is true.

The additional requirement to first-order necessary optimality conditions is that
the reduced Hessian ZT∇2

xxL(x∗, λ∗)Z is positive semidefinite. The output of
“eig(Z’*HessL*Z)” shows that ZT∇2

xxL(x∗, λ∗)Z has all eigenvalues nonneg-
ative, hence being positive semidefinite, where Z is a matrix whose columns
form a basis for the nullspace of the Jacobian of the active constraints.

(d) This claim is false.

We have strict complementarity. Hence, in addition to existence of Lagrange
multipliers, the second-order sufficient optimality conditions require the reduced
Hessian ZT∇2

xxL(x∗, λ∗)Z positive definite. This is not true, since one eigen-
value of ZT∇2

xxL(x∗, λ∗)Z is zero.

(e) This claim is true.

Since constraints 6, 7, . . . , 24 are inactive at x∗, they may be omitted from
the problem without affecting the local optimality conditions. The resulting
problem is then convex, since f and −gi, i = 1, . . . , 5, are convex on IR9.
Therefore, first-order necessary optimality conditions are sufficient to ensure
global minimality.

2. If the problem is put on the form

minimize f(x)

subject to g(x) ≥ 0, x ∈ IR2,

we obtain

∇f(x)T =
(
x1 + x2 + 3

2 x1 + x2 − 9
2

)
, ∇g(x)T =


x2 x1

1 0

0 1

 ,
∇2
xxL(x, λ) =

(
1 1− λ1

1− λ1 1

)
.
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With x(0) = (2 1
2)T and λ(0) = (1 0 0)T , the first QP-problem becomes

minimize 1
2

(
p1 p2

)( 1 0

0 1

)(
p1

p2

)
+
(

4 −2
)( p1

p2

)

subject to


1
2 2

1 0

0 1


(
p1

p2

)
≥


0

−2

−1
2

 .
The optimal solution of the QP-problem is given by the feasible point which is
closest, in 2-norm, to (−4 2)T . This may for example be solved graphically:

The solution is p(0) = (−2 2)T with constraint 2 active. The Lagrange multiplier

λ
(1)
2 of the active constraint is given by(

−2

2

)
+

(
4

−2

)
=

(
1

0

)
λ
(1)
2 ,

i.e., λ
(1)
2 = 2. Thus, we have λ(1) = (0 2 0)T , and x(1) is given by x(1) = x(0)+p(0) =

(0 5/2)T .

3. (a) The problem (QP ) is a convex quadratic program. The primal part of the
trajectory is obtained as minimizer to the barrier-transformed problem

(Pµ) min 1
2x

2
1 + 1

2x
2
2 − µ ln(x1 − 1)

under the implicit condition that x1 + 1 > 0. The first-order optimality condi-
tions of (Pµ) gives

x1(µ)− µ

x1(µ)− 1
= 0,

x2(µ) = 0.

Since (QP ) is a convex problem, (Pµ) is an unconstrained convex problem,
taking into account the implicit constraint x1 − 1 > 0. Therefore, the first-
order necessary optimality conditions are sufficient for global optimality.

The first-order optimality conditions give x2(µ) = 0, and x1(µ) is given by

x21(µ)− x1(µ)− µ = 0,
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i.e.,

x1(µ) =
1

2
+

√
1

4
+ µ,

where the plus sign has been chosen for the square root to enforce x1(µ)−1 > 0.

The dual part of the trajectory, i.e. λ(µ), is normally given by λi(µ) = µ/gi(x(µ)),
i = 1, . . . ,m. Here we only have one constraint, so

λ(µ) =
µ

x1(µ)− 1
=

µ

−1
2 +

√
1
4 + µ

=
1

2
+

√
1

4
+ µ.

(b) As µ → 0 it follows that x(µ) → (1 0)T and λ(µ) → 1. Let x∗ = (1 0)T and
λ∗ = 1. Then x∗ and λ∗ satisfy the first-order optimality conditions of (QP ).
Since (QP ) is a convex problem, this is sufficient for global optimality of (QP ).

(c) We have

x1(µ) = λ(µ) =
1

2
+

√
1

4
+ µ, x∗1 = λ∗ and x2(µ) = x∗2 = 0.

Therefore, ‖x(µ)−x∗‖2 = ‖λ(µ)−λ∗‖2, and it suffices to consider ‖x(µ)−x∗‖2.
The expression from above gives

‖x(µ)− x∗‖2 = −1

2
+

√
1

4
+ µ = −1

2
+

1

2

√
1 + 4µ = µ+ o(µ).

This is as expected. We would expect ‖x(µ)− x∗‖2 and ‖λ(µ)− λ∗‖2 to be of
the order µ near an optimal solution where regularity holds.

4. (a) We may write A = (I −e), with e = (1 1 1 1)T . Then, a matrix whose columns
form a basis for the nullspace of A is given by Z = (−(−eT ) 1)T = (1 1 1 1 1)T .

(b) The step to the minimizer of the new problem can be written as p = ZpZ ,
where

ZTHZpZ = −ZT(Hx∗ + c+ 20e1).

As x∗ is optimal to the original problem we have ZT(Hx∗ + c) = 0, so that
ZTHZpZ = −20ZTe1. Insertion of numerical values gives 10pz = −20, i.e.,
pZ = −2. Hence, if the optimal solution to the new problem is denoted by x̄,
we obtain

x̄ = x∗ + Zpz =



5

4

3

2

1


− 2



1

1

1

1

1


=



3

2

1

0

−1


.

(c) As x̄5 < 0, x̄ is not feasible to the third problem. When finding x̄, we computed
p as the first step in an active-set method for solving the third problem. The
maximum steplength is given by the maximum α such that x∗ + αp ≥ 0. We
obtain α = 1/2. The new point, x̂, becomes x̂ = x∗+ 1/2p = (4 3 2 1 0)T . This
point is in fact optimal, as the Lagrange multiplier of an added constraint will
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become positive. If the constraint x5 ≥ 0 is added as a fifth constraint, this can
be verified algebraically by solving

Hx̂+ c =



20

1

2

−5

−8


=



1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

−1 −1 −1 −1 1





λ̂1

λ̂2

λ̂3

λ̂4

λ̂5


,

to obtain the Lagrange multipliers. We obtain λ̂1 = 20, λ̂2 = 1, λ̂3 = 2,
λ̂4 = −5, λ̂5 = 10. As λ̂5 ≥ 0, the solution is optimal.

5. (See the course material.)


