1. (a) This claim is true.

The output of "active=find(g<sqrt(eps))" shows that constraints 1 and 3 are active at x^{*}.
In addition, the command "rank(A(active,:))" gives 2, showing that the constraint gradients of the active constraints are linearly independents, i.e., x^{*} is a regular point.
(b) This claim is true.

The output of "norm(gradf-A'*lambdastar)" is of the order of machine precision, i.e., $\nabla f\left(x^{*}\right)-A\left(x^{*}\right)^{T} \lambda^{*}$ is numerically zero.
In addition, the output of "[g lambdastar]" shows that $g\left(x^{*}\right) \geq 0, \lambda^{*} \geq 0$ and $g_{i}\left(x^{*}\right) \lambda_{i}^{*}=0, i=1, \ldots, 24$. Consequently, x^{*} together with λ^{*} satisfy the first-order necessary optimality conditions.
(c) This claim is true.

The additional requirement to first-order necessary optimality conditions is that the reduced Hessian $Z^{T} \nabla_{x x}^{2} \mathcal{L}\left(x^{*}, \lambda^{*}\right) Z$ is positive semidefinite. The output of "eig(Z'*HessL*Z)" shows that $Z^{T} \nabla_{x x}^{2} \mathcal{L}\left(x^{*}, \lambda^{*}\right) Z$ has all eigenvalues nonnegative, hence being positive semidefinite, where Z is a matrix whose columns form a basis for the nullspace of the Jacobian of the active constraints.
(d) This claim is false.

We have strict complementarity. Hence, in addition to existence of Lagrange multipliers, the second-order sufficient optimality conditions require the reduced Hessian $Z^{T} \nabla_{x x}^{2} \mathcal{L}\left(x^{*}, \lambda^{*}\right) Z$ positive definite. This is not true, since one eigenvalue of $Z^{T} \nabla_{x x}^{2} \mathcal{L}\left(x^{*}, \lambda^{*}\right) Z$ is zero.
(e) This claim is true.

Since constraints $6,7, \ldots, 24$ are inactive at x^{*}, they may be omitted from the problem without affecting the local optimality conditions. The resulting problem is then convex, since f and $-g_{i}, i=1, \ldots, 5$, are convex on \mathbb{R}^{9}. Therefore, first-order necessary optimality conditions are sufficient to ensure global minimality.
2. If the problem is put on the form

$$
\begin{array}{ll}
\operatorname{minimize} & f(x) \\
\text { subject to } & g(x) \geq 0, \quad x \in \mathbb{R}^{2},
\end{array}
$$

we obtain

$$
\begin{aligned}
\nabla f(x)^{T} & =\left(\begin{array}{ll}
x_{1}+x_{2}+\frac{3}{2} & x_{1}+x_{2}-\frac{9}{2}
\end{array}\right), \quad \nabla g(x)^{T}=\left(\begin{array}{cc}
x_{2} & x_{1} \\
1 & 0 \\
0 & 1
\end{array}\right), \\
\nabla_{x x}^{2} \mathcal{L}(x, \lambda) & =\left(\begin{array}{cc}
1 & 1-\lambda_{1} \\
1-\lambda_{1} & 1
\end{array}\right) .
\end{aligned}
$$

With $x^{(0)}=\left(\begin{array}{ll}2 & \frac{1}{2}\end{array}\right)^{T}$ and $\lambda^{(0)}=\left(\begin{array}{lll}1 & 0 & 0\end{array}\right)^{T}$, the first QP-problem becomes

$$
\begin{array}{ll}
\operatorname{minimize} & \frac{1}{2}\left(\begin{array}{ll}
p_{1} & p_{2}
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\binom{p_{1}}{p_{2}}+\left(\begin{array}{ll}
4 & -2
\end{array}\right)\binom{p_{1}}{p_{2}} \\
\text { subject to } & \left(\begin{array}{ll}
\frac{1}{2} & 2 \\
1 & 0 \\
0 & 1
\end{array}\right)\binom{p_{1}}{p_{2}} \geq\left(\begin{array}{r}
0 \\
-2 \\
-\frac{1}{2}
\end{array}\right) .
\end{array}
$$

The optimal solution of the QP-problem is given by the feasible point which is closest, in 2-norm, to $\left(\begin{array}{ll}-4 & 2\end{array}\right)^{T}$. This may for example be solved graphically:

The solution is $p^{(0)}=\left(\begin{array}{ll}-2 & 2\end{array}\right)^{T}$ with constraint 2 active. The Lagrange multiplier $\lambda_{2}^{(1)}$ of the active constraint is given by

$$
\binom{-2}{2}+\binom{4}{-2}=\binom{1}{0} \lambda_{2}^{(1)}
$$

i.e., $\lambda_{2}^{(1)}=2$. Thus, we have $\lambda^{(1)}=\left(\begin{array}{lll}0 & 2 & 0\end{array}\right)^{T}$, and $x^{(1)}$ is given by $x^{(1)}=x^{(0)}+p^{(0)}=$ $(05 / 2)^{T}$.
3. (a) The problem $(Q P)$ is a convex quadratic program. The primal part of the trajectory is obtained as minimizer to the barrier-transformed problem

$$
\left(P_{\mu}\right) \quad \min \quad \frac{1}{2} x_{1}^{2}+\frac{1}{2} x_{2}^{2}-\mu \ln \left(x_{1}-1\right)
$$

under the implicit condition that $x_{1}+1>0$. The first-order optimality conditions of $\left(P_{\mu}\right)$ gives

$$
\begin{aligned}
x_{1}(\mu)-\frac{\mu}{x_{1}(\mu)-1} & =0 \\
x_{2}(\mu) & =0
\end{aligned}
$$

Since $(Q P)$ is a convex problem, $\left(P_{\mu}\right)$ is an unconstrained convex problem, taking into account the implicit constraint $x_{1}-1>0$. Therefore, the firstorder necessary optimality conditions are sufficient for global optimality.
The first-order optimality conditions give $x_{2}(\mu)=0$, and $x_{1}(\mu)$ is given by

$$
x_{1}^{2}(\mu)-x_{1}(\mu)-\mu=0
$$

i.e.,

$$
x_{1}(\mu)=\frac{1}{2}+\sqrt{\frac{1}{4}+\mu}
$$

where the plus sign has been chosen for the square root to enforce $x_{1}(\mu)-1>0$. The dual part of the trajectory, i.e. $\lambda(\mu)$, is normally given by $\lambda_{i}(\mu)=\mu / g_{i}(x(\mu))$, $i=1, \ldots, m$. Here we only have one constraint, so

$$
\lambda(\mu)=\frac{\mu}{x_{1}(\mu)-1}=\frac{\mu}{-\frac{1}{2}+\sqrt{\frac{1}{4}+\mu}}=\frac{1}{2}+\sqrt{\frac{1}{4}+\mu}
$$

(b) As $\mu \rightarrow 0$ it follows that $x(\mu) \rightarrow\left(\begin{array}{ll}1 & 0\end{array}\right)^{T}$ and $\lambda(\mu) \rightarrow 1$. Let $x^{*}=\left(\begin{array}{ll}1 & 0\end{array}\right)^{T}$ and $\lambda^{*}=1$. Then x^{*} and λ^{*} satisfy the first-order optimality conditions of $(Q P)$. Since $(Q P)$ is a convex problem, this is sufficient for global optimality of $(Q P)$.
(c) We have

$$
x_{1}(\mu)=\lambda(\mu)=\frac{1}{2}+\sqrt{\frac{1}{4}+\mu}, \quad x_{1}^{*}=\lambda^{*} \quad \text { and } \quad x_{2}(\mu)=x_{2}^{*}=0
$$

Therefore, $\left\|x(\mu)-x^{*}\right\|_{2}=\left\|\lambda(\mu)-\lambda^{*}\right\|_{2}$, and it suffices to consider $\left\|x(\mu)-x^{*}\right\|_{2}$. The expression from above gives

$$
\left\|x(\mu)-x^{*}\right\|_{2}=-\frac{1}{2}+\sqrt{\frac{1}{4}+\mu}=-\frac{1}{2}+\frac{1}{2} \sqrt{1+4 \mu}=\mu+o(\mu)
$$

This is as expected. We would expect $\left\|x(\mu)-x^{*}\right\|_{2}$ and $\left\|\lambda(\mu)-\lambda^{*}\right\|_{2}$ to be of the order μ near an optimal solution where regularity holds.
4. (a) We may write $A=\left(\begin{array}{ll}I & -e\end{array}\right)$, with $e=\left(\begin{array}{lll}1 & 1 & 1\end{array} 1\right)^{T}$. Then, a matrix whose columns form a basis for the nullspace of A is given by $Z=\left(-\left(-e^{T}\right) 1\right)^{T}=\left(\begin{array}{lllll}1 & 1 & 1 & 1 & 1\end{array}\right)^{T}$.
(b) The step to the minimizer of the new problem can be written as $p=Z p_{Z}$, where

$$
Z^{T} H Z p_{Z}=-Z^{T}\left(H x^{*}+c+20 e_{1}\right)
$$

As x^{*} is optimal to the original problem we have $Z^{T}\left(H x^{*}+c\right)=0$, so that $Z^{T} H Z p_{Z}=-20 Z^{T} e_{1}$. Insertion of numerical values gives $10 p_{z}=-20$, i.e., $p_{Z}=-2$. Hence, if the optimal solution to the new problem is denoted by \bar{x}, we obtain

$$
\bar{x}=x^{*}+Z p_{z}=\left(\begin{array}{l}
5 \\
4 \\
3 \\
2 \\
1
\end{array}\right)-2\left(\begin{array}{l}
1 \\
1 \\
1 \\
1 \\
1
\end{array}\right)=\left(\begin{array}{r}
3 \\
2 \\
1 \\
0 \\
-1
\end{array}\right)
$$

(c) As $\bar{x}_{5}<0, \bar{x}$ is not feasible to the third problem. When finding \bar{x}, we computed p as the first step in an active-set method for solving the third problem. The maximum steplength is given by the maximum α such that $x^{*}+\alpha p \geq 0$. We obtain $\alpha=1 / 2$. The new point, \widehat{x}, becomes $\widehat{x}=x^{*}+1 / 2 p=\left(\begin{array}{lll}4 & 3 & 2\end{array} 0^{T}\right.$. This point is in fact optimal, as the Lagrange multiplier of an added constraint will
become positive. If the constraint $x_{5} \geq 0$ is added as a fifth constraint, this can be verified algebraically by solving

$$
H \widehat{x}+c=\left(\begin{array}{r}
20 \\
1 \\
2 \\
-5 \\
-8
\end{array}\right)=\left(\begin{array}{rrrrr}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
-1 & -1 & -1 & -1 & 1
\end{array}\right)\left(\begin{array}{l}
\hat{\lambda}_{1} \\
\hat{\lambda}_{2} \\
\hat{\lambda}_{3} \\
\hat{\lambda}_{4} \\
\hat{\lambda}_{5}
\end{array}\right)
$$

to obtain the Lagrange multipliers. We obtain $\hat{\lambda}_{1}=20, \hat{\lambda}_{2}=1, \hat{\lambda}_{3}=2$, $\hat{\lambda}_{4}=-5, \hat{\lambda}_{5}=10$. As $\hat{\lambda}_{5} \geq 0$, the solution is optimal.
5. (See the course material.)

