
SF2822 Applied nonlinear optimization, final exam
Wednesday June 10 2009 8.00–13.00

Examiner: Anders Forsgren, tel. 790 71 27.
Allowed tools: Pen/pencil, ruler and eraser; plus a calculator provided by the department.
Solution methods: Unless otherwise stated in the text, the problems should be solved
by systematic methods, which do not become unrealistic for large problems. If you use
methods other than what have been taught in the course, you must explain carefully.
Note! Personal number must be written on the title page. Write only one exercise per
sheet. Number the pages and write your name on each page.
22 points are sufficient for a passing grade. For 20-21 points, a completion to a passing
grade may be made within three weeks from the date when the results of the exam are
announced.

1. Consider a nonlinear programming problem (NLP ) defined by

(NLP )

minimize ex1 − x2
1 + x1x2 + 1

2x2
2 + 2x2

3 − x1 + x2 − 2x3

subject to x2
1 + x2

2 + x2
3 − 1 = 0,

−x2
1 − x2

2 − x2
3 ≥ −2,

x2 ≥ 0.

Let x̃ = (0 0 1)T and let x̂ = (1 0 0)T .

Use first- and second-order optimality conditions for (NLP ) to determine if x̃ and/or
x̂ are local minimizers of (NLP ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (10p)

2. Consider the nonlinear programming problem (NLP ) defined by

(NLP )

minimize 1
2(x1 + x2)2 + 5

2x1 − 1
2x2

subject to x1 · x2 − 1 ≥ 0.
x1 ≥ 0,
x2 ≥ 0.

We want to solve (NLP ) by sequential quadratic programming. Let x(0) = (2 1
2)T ,

λ(0) = (1 0 0)T and perform one iteration, i.e., calculate x(1) and λ(1). You may solve
the subproblem in an arbitrary way that need not be systematic, e.g. graphically,
and you do not need to perform any linesearch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (10p)

Note: According to the convention of the textbook we define the Lagrangian L(x, λ)
as L(x, λ) = f(x) − λTg(x), where f(x) is the objective function and g(x) is the
constraint function, with the inequality constraints written as g(x) ≥ 0.
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3. Derive the expression for the symmetric rank-1 update, Ck, in a quasi-Newton update
Bk+1 = Bk + Ck. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (10p)

4. Consider the quadratic program (QP ) defined by

(QP )
minimize 1

2xTHx + cTx

subject to Ax = b,

where

H =



1 0 0 0 0
0 2 0 0 0
0 0 3 0 0
0 0 0 4 0
0 0 0 0 5


, c =



−3
−7
−10
−10
−3


,

A =


1 0 0 0 1
0 1 0 0 −1
0 0 1 0 1
0 0 0 1 −1

 , b =


6
3
4
1


The optimal solution to (QP ) is given by x∗ = (5 4 3 2 1)T .

(a) Determine a matrix Z whose columns form a basis for the nullspace of A. (2p)

(b) It turns out that c1 was not correctly given in the original problem. It should
have been c1 = −30. Call this new problem (QP2). Solve (QP2) making use of
x∗ and Z. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (4p)

(c) It turns out that in addition to c1 = −30, there should have been constraints x ≥
0. Call this new problem (QP3). Solve (QP3) making use of your calculations
in Exercise 4b. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (4p)

5. Consider the optimization problem

(NLP )
minimize

x∈IRn

1
2

∑
i∈U

(pT
i x− ui)2+ + 1

2

∑
i∈L

(li − pT
i x)2+,

subject to x ≥ 0,

where L and U are nonintersecting index sets such that L
⋃
U = {1, . . . ,m}, and

the subscript ′′+′′ denotes the positive part, i.e., x+ = max(x, 0). The constants ui,
i ∈ U , and li, i ∈ L, are known as well as the constant vectors pi, i = 1, . . . ,m. This
means that we pay a quadratic penalty cost for violating lower bounds li, i ∈ L, and
upper bounds ui, i ∈ U , respectively.

The formulation (NLP ) is straightforward, but a drawback is that the objective
function is not twice-continuously differentiable. Your task is to show that we may
obtain a smooth problem by introducing additional variables and constraints.
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(a) Show that the objective function of (NLP ) has continuous gradient but dis-
continuities in the Hessian. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2p)

(b) Show that (NLP ) is equivalent to the quadratic programming problem

(QP )

minimize
x∈IRn,y∈IRm

1
2

∑
i∈U

y2
i + 1

2

∑
i∈L

y2
i ,

subject to yi ≥ pT
i x− ui, i ∈ U ,

yi ≥ li − pT
i x, i ∈ L,

x ≥ 0.

Do so by showing minimization over y in (QP ) for a given x gives yi = (pT
i x−

ui)+, i ∈ U , and yi = (li − pT
i x)+, i ∈ L. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (4p)

(c) For a given positive barrier parameter µ, formulate the perturbed first-order op-
timality conditions that are to be solved approximately if a primal-dual interior
method is applied to (QP ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (4p)

Note: The motivation for considering this reformulation is that we obtain a smooth
problem. The increased dimensionality introduced by the y variables can be elimi-
nated in the linear equations that are solved in a primal-dual interior method.

Good luck!


