
SF2822 Applied nonlinear optimization, final exam
Monday May 20 2013 8.00–13.00

Examiner: Anders Forsgren, tel. 08-790 71 27.

Allowed tools: Pen/pencil, ruler and eraser. Note! Calculator is not allowed.

Solution methods: Unless otherwise stated in the text, the problems should be solved by
systematic methods, which do not become unrealistic for large problems. Motivate your
conclusions carefully. If you use methods other than what have been taught in the course,
you must explain thoroughly.

Note! Personal number must be written on the title page. Write only one exercise per
sheet. Number the pages and write your name on each page.

22 points are sufficient for a passing grade. For 20-21 points, a completion to a passing
grade may be made within three weeks from the date when the results of the exam are
announced.

1. Consider the quadratic program (QP ) defined by

(QP )
minimize 1

2x
THx+ cTx

subject to Ax = b,

where

H =


2 1 1 1

1 2 1 1

1 1 2 1

1 1 1 2

 , c =


−5

−5

−5

0

 ,

A =


−1 1 0 0

−1 0 1 0

−1 0 0 1

 , b =


1

1

1


A feasible solution to (QP ) is given by x̄ = (−1 0 0 0)T .

(a) Show that H is a positive definite matrix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(1p)
Hint: It holds that H = I + eeT , where I is the identity matrix and e is the
vector of ones.

(b) Determine a matrix Z whose columns form a basis for the nullspace of A. (2p)

(c) Solve (QP ) making use of x̄ and Z. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5p)

(d) Is it possible to remove one or several of the constraints of (QP ) such that the
optimal solution remains unchanged? If so, which constraint or constraints?
Motivate the answer carefully. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2p)
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2. Consider the quadratic program (QP ) defined by

(QP )

minimize 1
2x

2
1 + 1

2x
2
2

subject to x1 + x2 ≥ 6,
x1 ≥ 2,
x2 ≥ 0.

Solve (QP ) by an active-set method, with the initial point x(0) given by x(0) =
(8 0)T and the constraint x2 ≥ 0 in the working set. The equality-constrained
quadratic programs that arise need not be solved in a systematic way. They may
for example be solved graphically. However, the values of the generated iterates x(k)

and corresponding Lagrange multipliers λ(k) should be calculated. . . . . . . . . . . (10p)

3. Consider the quadratic program (QP ) given by

(QP )
minimize 1

2x
2
1 + 1

2x
2
2

subject to x1 − 1 ≥ 0.

(a) For a given positive barrier parameter µ, find the corresponding optimal so-
lution x(µ) and the corresponding multiplier estimate λ(µ) to the barrier-
transformed problem. It is possible to obtain an analytic expression for this
small problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(5p)

(b) Show that x(µ) and λ(µ) which you obtained in (3a) converge to the optimal
solution x∗ and Lagrange multiplier λ∗ respectively of (QP ). . . . . . . . . . . . . (3p)

(c) For x(µ) and λ(µ) which you obtained in (3a), how does ‖x(µ) − x∗‖2 and
‖λ(µ)− λ∗‖2 behave when µ is small and positive? Is this as expected? Com-
ment on the result. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2p)

4. Consider the nonlinear program

(NLP )
minimize f(x)

subject to gi(x) ≥ 0, i = 1, 2, x ∈ IR2,

where f : IR2 → IR and gi : IR2 → IR, i = 1, 2, are twice-continuously differentiable.
Assume specifically that x(0) = (0 0)T , at which it holds that

f(x(0)) = 0, ∇f(x(0)) =
(

0 0
)T

, ∇2f(x(0)) =

(
1 0

0 1

)
,

g1(x
(0)) = 2, ∇g1(x(0)) =

(
1 1

)T
, ∇2g1(x

(0)) =

(
−2 0

0 −2

)
,

g2(x
(0)) = −1, ∇g2(x(0)) =

(
1 0

)T
, ∇2g2(x

(0)) =

(
−1 1

1 −1

)
.

(a) Your friend AF claims that since ∇f(x(0)) = 0 and ∇2f(x(0)) � 0, it must hold
that x(0) is a local minimizer to (NLP ). Explain why he is wrong. . . . . . . (2p)
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(b) We want to solve (NLP ) by sequential quadratic programming. Let x(0) be
given above, let λ(0) = (0 0)T and perform one iteration, i.e., calculate x(1)

and λ(1). You may solve the subproblem in an arbitrary way that need not be
systematic, e.g. graphically, and you do not need to perform any linesearch.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (8p)

Remark: In accordance to the notation of the textbook, the sign of λ is chosen such
that L(x, λ) = f(x)− λTg(x).

5. Consider the semidefinite programming problem (P ) defined as

(P )
minimize cTx

subject to G(x) � 0,

where G(x) =
∑n
j=1Ajxj − B for B and Aj , j = 1, . . . , n, are symmetric m ×m-

matrices. The corresponding dual problem is given by

(D)

maximize trace(BY )

subject to trace(AjY ) = cj , j = 1, . . . , n,
Y = Y T � 0.

A barrier transformation of (P ) for a fixed positive barrier parameter µ gives the
problem

(Pµ) minimize cTx− µ ln(det(G(x))).

(a) Show that the first-order necessary optimality conditions for (Pµ) are equivalent
to the system of nonlinear equations

cj − trace(AjY ) = 0, j = 1, . . . , n,

G(x)Y − µI = 0,

assuming that G(x) � 0 and Y � 0 are kept implicitly. . . . . . . . . . . . . . . . . . . (5p)

(b) Show that a solution x(µ) and Y (µ) to the system of nonlinear equations, such
that G(x(µ)) � 0 and Y (µ) � 0, is feasible to (P ) and (D) respectively with
duality gap mµ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3p)

(c) In linear programming, when G(x) and Y are diagonal, it is not an issue how
the equation G(x)Y − µI = 0 is written. The linearizations of G(x)Y − µI = 0
and Y G(x)− µI = 0 are then identical. Explain why this is in general not the
case for semidefinite programming and how it can be handled. . . . . . . . . . . (2p)

Remark: For a symmetric matrix M we above use M � 0 and M � 0 to denote
that M is positive definite and positive semidefinite respectively. You may use the
relations

∂ ln(det(G(x)))

∂xj
= trace(AjG(x)−1) for j = 1, . . . , n,

without proof.

Good luck!


