
SF2822 Applied nonlinear optimization, final exam
Thursday June 1 2017 8.00–13.00

Examiner: Anders Forsgren, tel. 08-790 71 27.

Allowed tools: Pen/pencil, ruler and eraser. Note! Calculator is not allowed.

Solution methods: Unless otherwise stated in the text, the problems should be solved by
systematic methods, which do not become unrealistic for large problems. Motivate your
conclusions carefully. If you use methods other than what have been taught in the course,
you must explain carefully.

Note! Personal number must be written on the title page. Write only one question per
sheet. Number the pages and write your name on each page.

22 points are sufficient for a passing grade. For 20-21 points, a completion to a passing
grade may be made within three weeks from the date when the results of the exam are
announced.

1. Consider the inequality-constrained quadratic program (IQP ) defined by

(IQP )
minimize 1

2x
THx+ cTx

subject to Ax ≥ b,

with

H =


1 3 0

3 1 0

0 0 1

 , c =


−4

−4

−1

 , A =
(

0 1 0
)
, b =

(
0
)
.

In this question, you may base your arguments on the fact that the problem has only
one constraint. The linear systems of equations that may arise need not be solved
in a systematic way.

(a) Consider the unconstrained quadratic program

(QP ) minimize 1
2x

THx+ cTx.

Is there a point that satisfies the second-order necessary optimality conditions
for (QP )? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3p)

(b) Consider the equality-constrained quadratic program

(EQP )
minimize 1

2x
THx+ cTx

subject to Ax = b.

Is there a point that satisfies the second-order necessary optimality conditions
for (EQP )? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(3p)

(c) Does (IQP ) have a local minimizer? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2p)

(d) Does (IQP ) have a global minimizer? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2p)

2. Consider the nonlinear program

(NLP )

minimize f(x)

subject to gi(x) ≥ 0, i = 1, 2, 3,
x ∈ IR2,

1
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where f : IR2 → IR and gi : IR2 → IR, i = 1, 2, 3, are twice-continuously differen-
tiable. Assume specifically that x(0) = (0 0)T , at which it holds that

f(x(0)) = 0, ∇f(x(0)) =
(

0 0
)T

, ∇2f(x(0)) =

(
0 0

0 0

)
,

g1(x
(0)) = −1, ∇g1(x(0)) =

(
1 0

)T
, ∇2g1(x

(0)) =

(
−1 1

1 −1

)
,

g2(x
(0)) = −2, ∇g2(x(0)) =

(
0 1

)T
, ∇2g2(x

(0)) =

(
−1 1

1 −1

)
,

g3(x
(0)) = −2, ∇g3(x(0)) =

(
1 1

)T
, ∇2g3(x

(0)) =

(
−2 0

0 −2

)
.

We want to solve (NLP ) by sequential quadratic programming. Let x(0) be given as
above, let λ(0) = (0 0 1/2)T and perform one iteration, i.e., calculate x(1) and λ(1).
You may solve the subproblem in an arbitrary way that need not be systematic,
e.g. graphically, and you do not need to perform any linesearch. . . . . . . . . . . . . . (10p)

Remark: In accordance to the notation of the textbook, the sign of λ is chosen such
that L(x, λ) = f(x)− λTg(x).

3. Derive the expression for the symmetric rank-1 update, Ck, in a quasi-Newton update
Bk+1 = Bk + Ck. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (10p)

4. Consider the QP-problem (QP ) defined as

(QP )
minimize 1

2x
2
1 + 1

2x
2
2

subject to x1 + x2 ≥ a,

where a is a given constant scalar. The scalar a may take on any value, that may
be positive, zero or negative.

(a) For a given positive barrier parameter µ, find the corresponding optimal so-
lution x(µ) and the corresponding multiplier estimate λ(µ) to the barrier-
transformed problem. It is possible to obtain an analytical expression for this
small problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(5p)

(b) Show that x(µ) and λ(µ) which you obtained in (4a) converge to the optimal
solution and Lagrange multiplier respectively of (QP ) for any given constant
value of a. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5p)

5. Consider the optimization problem (P ) defined by

(P )
minimize cTx+ 1

2x
THx

subject to xj ∈ {0, 1}, j = 1, . . . , n,
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where H is an indefinite symmetric matrix. Problems of this type arise within
combinatorial optimization, and the interest is to find a global minimizer.

One may compute lower bounds on the optimal value of (P ) by considering relaxed
problems.

(a) One way to relax (P ) is to replace the constraints xj ∈ {0, 1}, j = 1, . . . , n,
with 0 ≤ xj ≤ 1, j = 1, . . . , n. This gives a relaxed problem without discrete
variables, according to

minimize cTx+ 1
2x

THx

subject to 0 ≤ xj ≤ 1, j = 1, . . . , n,

Explain way this relaxed problem is not very interesting in practise. . . . . (3p)

(b) An alternative way to create a relaxation to (P ) is to introduce a symmetric
matrix Y and formulate the semidefinite programming problem

(SDP )

minimize cTx+ 1
2 trace(HY )

subject to

(
Y x

xT 1

)
�
(

0 0

0 0

)
,

Y = Y T ,
yjj = xj , j = 1, . . . , n.

Show that if the constraint Y = xxT is added to (SDP ), one obtains a problem
which is equivalent to (P ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (7p)

Hint: The following two results, which may be used without proof, might be
useful:

(i) If H is an n× n-matrix and x is an n-vector, then trace(HxxT ) = xTHx.

(ii) If Y is a symmetric n× n-matrix and x is an n-vector, then(
Y x

xT 1

)
�
(

0 0

0 0

)
if and only if Y − xxT � 0.

Good luck!


