
SF2822 Applied nonlinear optimization, final exam
Wednesday August 15 2018 8.00–13.00

Examiner: Anders Forsgren, tel. 08-790 71 27.

Allowed tools: Pen/pencil, ruler and eraser. Note! Calculator is not allowed.

Solution methods: Unless otherwise stated in the text, the problems should be solved by
systematic methods, which do not become unrealistic for large problems. Motivate your
conclusions carefully. If you use methods other than what have been taught in the course,
you must explain thoroughly.

Note! Personal number must be written on the title page. Write only one question per
sheet. Number the pages and write your name on each page.

22 points are sufficient for a passing grade. For 20-21 points, a completion to a passing
grade may be made within three weeks from the date when the results of the exam are
announced.

1. Consider a particular nonlinear programming problem

(NLP )

minimize f(x)

subject to gi(x) ≥ 0, i = 1, . . . , 24,
x ∈ IR9,

where f : IR9 → IR and g : IR9 → IR24 are twice continuously differentiable. It is
known that f and −gi, i = 1, . . . , 5, are convex on IR9. It is also known that −gi,
i = 6, 7, . . . , 24, are not convex on IR9.

A highly reliable friend of yours named AR has written a Matlab file “prob” with
syntax “[f,gradf,g,A,HessL] = prob(x,lambda)”. For given “x” and “lambda”
(x and λ), the function returns

f f(x),

gradf ∇f(x),

g g(x),

A A(x), i,e.,


∇g1(x)T

...

∇g24(x)T

 ,

HessL ∇2
xxL(x, λ), i,e., ∇2f(x)−

24∑
i=1

λi∇2gi(x),

for this particular problem (NLP ). You do not have access to “prob”, but we assume
that the function is correct.

A not so reliable friend of yours named AF claims that he has solved the problem by
making use of “prob”, finding a solution x∗ and corresponding Lagrange multiplier
vector λ∗. It is not clear what AF means by “solved”. You have access to a printout
of some calculations that he has done in Matlab to verify the solution “xstar” and
corresponding Lagrange multiplier vector “lambdastar”. Since these calculations
only involve Matlab built-in functions and “prob”, we assume that they are correct
in spite of AF not being so reliable. The Matlab printout can be found at the end
of the exam.

AF has made a number of claims. Based on the Matlab printout, comment each of
AF’s claims. Motivate each of your comments.
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(a) Claim by AF: “The point x∗ is a regular point to (NLP ).” . . . . . . . . . . . . . .(2p)

(b) Claim by AF: “The point x∗ satisfies, together with λ∗, the first-order necessary
optimality conditions to (NLP ).” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2p)

(c) Claim by AF: “The point x∗ satisfies, together with λ∗, the second-order neces-
sary optimality conditions to (NLP ).” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2p)

(d) Claim by AF: “The point x∗ satisfies, together with λ∗, the second-order suffi-
cient optimality conditions to (NLP ).” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2p)

(e) Claim by AF: “The point x∗ is a global minimizer to (NLP ).” . . . . . . . . . . (2p)

2. Consider the nonlinear programming problem (NLP ) defined by

(NLP )

minimize 1
2(x1 + x2)

2 + 3
2x1 −

9
2x2

subject to x1 · x2 − 1 ≥ 0.
x1 ≥ 0,
x2 ≥ 0.

We want to solve (NLP ) by sequential quadratic programming. Let x(0) = (2 1
2)T ,

λ(0) = (1 0 0)T and perform one iteration, i.e., calculate x(1) and λ(1). You may solve
the subproblem in an arbitrary way that need not be systematic, e.g. graphically,
and you do not need to perform any linesearch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (10p)

Note: According to the convention of the textbook we define the Lagrangian L(x, λ)
as L(x, λ) = f(x) − λTg(x), where f(x) is the objective function and g(x) is the
constraint function, with the inequality constraints written as g(x) ≥ 0.

3. Consider the quadratic program (QP ) given by

(QP )
minimize 1

2x
2
1 + 1

2x
2
2

subject to x1 − 1 ≥ 0.

(a) For a given positive barrier parameter µ, find the corresponding optimal so-
lution x(µ) and the corresponding multiplier estimate λ(µ) to the barrier-
transformed problem. It is possible to obtain an analytic expression for this
small problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(5p)

(b) Show that x(µ) and λ(µ) which you obtained in Question 3a converge to the
optimal solution x∗ and Lagrange multiplier λ∗ respectively of (QP ). . . . (3p)

(c) For x(µ) and λ(µ) which you obtained in Question 3a, how does ‖x(µ)− x∗‖2
and ‖λ(µ) − λ∗‖2 behave when µ is small and positive? Is this as expected?
Comment on the result. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(2p)

4. Consider the quadratic program (QP ) defined by

(QP )
minimize 1

2x
THx+ cTx

subject to Ax = b,
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where

H =



1 0 0 0 0

0 2 0 0 0

0 0 4 0 0

0 0 0 2 0

0 0 0 0 1


, c =



−4

−5

−6

−7

−8


,

A =


1 0 0 0 −1

0 1 0 0 −1

0 0 1 0 −1

0 0 0 1 −1

 , b =


4

3

2

1


The optimal solution to (QP ) is given by x∗ = (5 4 3 2 1)T .

(a) Determine a matrix Z whose columns form a basis for the nullspace of A. (2p)

(b) It turns out that c1 was not correctly given in the original problem. It should
have been c1 = 16. Call this new problem (QP2). Solve (QP2) making use of
x∗ and Z. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (4p)

(c) It turns out that in addition to c1 = 16, there should have been constraints x ≥
0. Call this new problem (QP3). Solve (QP3) making use of your calculations
in Question 4b. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (4p)

5. Consider the semidefinite programming problem (P ) defined as

(P )
minimize cTx

subject to G(x) � 0,

where G(x) =
∑n
j=1Ajxj − B for B and Aj , j = 1, . . . , n, are symmetric m ×m-

matrices. The corresponding dual problem is given by

(D)

maximize trace(BY )

subject to trace(AjY ) = cj , j = 1, . . . , n,
Y = Y T � 0.

A barrier transformation of (P ) for a fixed positive barrier parameter µ gives the
problem

(Pµ) minimize cTx− µ ln(det(G(x))).

(a) Show that the first-order necessary optimality conditions for (Pµ) are equivalent
to the system of nonlinear equations

cj − trace(AjY ) = 0, j = 1, . . . , n,

G(x)Y − µI = 0,

assuming that G(x) � 0 and Y � 0 are kept implicitly. . . . . . . . . . . . . . . . . . . (5p)
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(b) Show that a solution x(µ) and Y (µ) to the system of nonlinear equations, such
that G(x(µ)) � 0 and Y (µ) � 0, is feasible to (P ) and (D) respectively with
duality gap mµ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3p)

(c) In linear programming, when G(x) and Y are diagonal, it is not an issue how
the equation G(x)Y − µI = 0 is written. The linearizations of G(x)Y − µI = 0
and Y G(x)− µI = 0 are then identical. Explain why this is in general not the
case for semidefinite programming and how it can be handled. . . . . . . . . . . (2p)

Remark: For a symmetric matrix M we above use M � 0 and M � 0 to denote
that M is positive definite and positive semidefinite respectively. You may use the
relations

∂ ln(det(G(x)))

∂xj
= trace(AjG(x)−1) for j = 1, . . . , n,

without proof.

Good luck!
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Matlab printout for Question 1.

>> xstar

xstar =

0.2500

0.7500

1.0000

0.7500

0.2500

0.4330

0.4330

-0.4330

-0.4330

>> lambdastar

lambdastar =

0.4330

0

0.2165

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

>> [f,gradf,g,A,HessL] = prob(xstar,lambdastar);

(Matlab printout continues on next page.)
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>> [g lambdastar]

ans =

0 0.4330

0.2500 0

0 0.2165

0.4330 0

0.5000 0

0.4330 0

0.2500 0

0.2500 0

0.4330 0

0.5000 0

0.4330 0

0.7500 0

0.2500 0

0.2500 0

0.7500 0

0.7500 0

0.2500 0

0.2500 0

0.7500 0

0.2500 0

0.2500 0

0.2500 0

0.7500 0

0.2500 0

>> norm(gradf-A’*lambdastar)

ans =

8.7771e-17

>> eps

ans =

2.2204e-16

>> active=find(g<sqrt(eps))

active =

1

3

(Matlab printout continues on next page.)
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>> rank(A(active,:))

ans =

2

>> Z=null(A(active,:))

Z =

0.2222 -0.2750 0.3849 0.4763 -0.3849 -0.4763 0

0.2750 0.2222 0.4763 -0.3849 -0.4763 0.3849 0

0 0 0 0 0 0 1.0000

0.8889 -0.0393 -0.1925 0.0680 0.1925 -0.0680 0

0.0393 0.8889 0.0680 0.1925 -0.0680 -0.1925 0

-0.1925 -0.0680 0.6667 0.1179 0.3333 -0.1179 0

-0.0680 0.1925 -0.1179 0.6667 0.1179 0.3333 0

0.1925 0.0680 0.3333 -0.1179 0.6667 0.1179 0

0.0680 -0.1925 0.1179 0.3333 -0.1179 0.6667 0

>> eig(Z’*HessL*Z)

ans =

1.2990

0.6330

0.5000

0.5000

0.5000

0.5000

0

(End of Matlab printout.)


