

KTH Matematik

Homework 2 Mathematical Systems Theory, SF2832 Fall 2009

You may use min(3,(your score)/10) as bonus credit on the exam.

1. Consider the pair (A, B), where

$$A = \begin{bmatrix} -1 & 0 \\ 0 & \alpha \end{bmatrix}$$
$$B^{T} = \begin{bmatrix} 1 & -\alpha \end{bmatrix}.$$

2. You will in this problem derive and investigate a number of realizations for the transfer function

$$R(s) = \begin{bmatrix} \frac{\gamma}{s+1} & \frac{1}{s+\alpha} \\ \frac{1}{s+1} & \frac{1}{s+\alpha} \end{bmatrix},$$

where α, γ are constant.

- (a) Determine the standard reachable realization of R(s). (3p)
- (c) Determine the standard observable realization of R(s). (4p)
- **3.** Suppose the following is a realization of a given r(s):

$$(A, B, C) = \begin{pmatrix} \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -3 & -4 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 & 0 \end{bmatrix} \end{pmatrix}$$

- (a) Is this realization minimal?(3p)
- 4. Consider

$$\dot{x} = Ax + Bu$$
$$y = Cx,$$

where,

$$(A, B, C) = \left(\begin{bmatrix} 0 & 1 & 1 \\ -2 & -3 & \alpha \\ 0 & 0 & \beta \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix}, \begin{bmatrix} 2 & 1 & 0 \end{bmatrix} \right),$$

and α, β are constant.

- (a) When is A a stable matrix? $\dots (2p)$
- (b) When A as defined above is not a stable matrix, is it still possible for the system to be BIBO stable?......(3p)
- **5.** A time-invariant system

$$\dot{x} = Ax + Bu$$
$$y = Cx$$

is said to be internally balanced if A is a stable matrix and

$$\int_0^\infty e^{At}BB^Te^{A^Tt}dt = \int_0^\infty e^{A^Tt}C^TCe^{At}dt := W,$$

where W is a diagonal matrix with positive diagonal entries.

Consider the internally balanced system partitioned as

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} B_1 \\ B_2 \end{bmatrix} u$$
$$y = \begin{bmatrix} C_1 & C_2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}.$$

Show the reduced system

$$\dot{\bar{x}} = \bar{A}\bar{x} + \bar{B}u$$
$$\bar{y} = \bar{C}\bar{x},$$