
Solution to Homework 2
Mathematical Systems Theory, SF2832

Fall 2016
You may use min(5,(your score)/4) as bonus credit on the exam.

1. Consider a time-invariant system
ẋ = Ax,

where x ∈ Rn, A ̸= 0 and tr(A) = 0, tr(·) denotes the trace of a matrix.

Show

(a) The system is not asymptotically stable (around x = 0). . . . . . . . . . . . . . . . . (2p)

Answer: Since
∑

λi = tr(A) = 0, not all eigenvalues can have negative real
parts.

(b) The system is not even (critically) stable if A is also symmetric. . . . . . . . . . (1p)

Answer: In this case A is diagonalizable and all the eigenvalues are real, thus
not all eigenvalues can be non-positive unless A = 0.

(c) The system is (critically) stable if A is also skew symmetric (AT = −A). . (1p)

Answer: ∥x(t)∥ = ∥x(0)∥.

2. Given the following system

ẋ =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...
...

0 0 0 · · · 1
−a1 −a2 −a3 · · · −an

x+


0
0
...
0
1

u

y =
[
c1 c2 · · · cn

]
x.

(a) We say (C,A) is detectable if CeAtx0 = 0, ∀t ≥ 0 implies limt→∞ eAtx0 = 0.

For the case c2 = 1, ci = 0, i ≥ 3, discuss conditions on c1 such that the system
being detectable but not observable is possible. . . . . . . . . . . . . . . . . . . . . . . . . . . (3p)

Answer: (C,A) is detectable if and only if all canceled poles by the zeros are
with negative real parts. This can be seen using Kalman decomposition (after
possible pole-zero cancellation, we would have a minimal realization, and all
minimal realizations are similar). This implies that c1 > 0.

(b) Use Kalman decomposition to show that Theorem 4.3.4 in the compendium
can be modified as: Assume (C,A) is detectable. Then A is a stable matrix
iff ATP + PA + CTC = 0 has a positive semi-definite solution P such that
xTPx > 0 ∀x /∈ ker Ω. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3p)

Answer: We can decompose Rn = R∩ ker Ω+Vor (Note R = Rn). This gives

P =

[
0 0
0 P2

]
, where P2 is positive definite.
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3. (a) Consider the system in 2.(a) and let n = 3, c3 = 1. Find the feedback control
u = kx that makes y(t) = 0 ∀t ≥ 0 (this implies that we assume y(0) = 0). (2p)

Answer: y(t) = 0 implies ẏ(t) = 0 from which we can solve for u.

(b) Show that for all solutions x(t) of the closed-loop system in 3.(a) such that
cx(t) = 0 ∀t ≥ 0, limt→∞ x(t) = 0 iff c1 > 0 and c2 > 0. . . . . . . . . . . . . . . . . . . (2p)

Answer: When y(t) = 0, i.e. x3(t) = −c1x1(t)−c2x2(t), we have ẋ1 = x2, ẋ2 =
−c1x1(t)− c2x2(t) and the conclusion follows.

4. Consider

R(s) =


k

s+ 1

1

s+ 2

1

s+ 1

1

s+ 1

 ,

where k is a constant.

(a) Determine the standard reachable realization of R(s). . . . . . . . . . . . . . . . . . . . (2p)

Answer: omitted.

(b) Determine the standard observable realization of R(s). . . . . . . . . . . . . . . . . . . (2p)

Answer: omitted.

(c) What is the McMillan degree of R(s)? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2p)

Answer: R(s) = 3 if k ̸= 0, R(s) = 2 if k = 0.


