
Solution to Exam in SF2832 Mathematical Systems Theory
14.00-19.00, January 8, 2020

Examiner: Xiaoming Hu, tel. 790 7180.

Allowed material: Anders Lindquist & Janne Sand, An Introduction to Mathematical
Systems Theory, Per Enqvist, Exercises in Mathematical Systems Theory, your own class
notes, and β mathematics handbook.

Solution methods: All conclusions should be carefully motivated.

Note! Your personal number must be stated on the cover sheet. Number your pages and
write your name on each sheet that you turn in!

You need 45 points credit (including your still valid bonus) to pass the exam. The other
grade limits are listed on the course home page.

Read this before you start: 1. The problems are NOT ordered in terms of difficulty.
2. If the problem seems to be too complex (either in terms of calculation or abstraction),
then it is likely that you have not found the best method yet.

1. Determine if each of the following statements is true or false. You must justify your
answers. All matrices involved are assumed to be constant matrices unless otherwise
specified.

(a) Consider an n-dimensional time-varying system ẋ = A(t)x, where A(t) is con-
tinuous. If AT (t) = −A(t) ∀t ∈ R, then ΦT (t, s) = Φ−1(t, s), where Φ(t, s) is
the state transition matrix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5p)

Answer: True. This can be seen using the property ∂
∂sΦ(t, s) = −Φ(t, s)A(s),

thus ∂
∂sΦ

T (t, s) = −AT (s)ΦT (t, s) = A(s)ΦT (t, s).

(b) Consider ẋ = Ax+ bu, where x ∈ Rn, u ∈ R. If rank A < n− 1, then (A, b) is
never controllable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5p)

Answer: True. Since a controllable system can always be transformed into the
canonical controllable form in which A has rank at least n− 1.

(c) Given a strictly proper rational matrix function R(s), if the dimension of its
standard reachable realization is equal to that of its standard observable rea-
lization, then that dimension must be equal to the McMillan degree of R(s).
(5p)

Answer: False. One can easily find a counter example in the compendium.

(d) Consider the Riccati differential equation:

Ṗ (t) = −ATP (t)− P (t)A+ P (t)BBTP (t)− CTC
P (t1) = P1,

where C is a p×n matrix and p < n. If P1 is only positive semidefinite (det P1 =
0), then det P (t) = 0 for any t < t1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5p)

Answer: False. For example, when (C,A) is observable.
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2. Consider :

ẋ = Ax+ bu

y = cx,

where

A =

α 0 1
0 −1 0
0 1 1

 , b =

1
1
0

 , c =
[
0 1 1

]
, and α is constant.

(a) Find the state transition matrix eAt. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (6p)

Answer: Solve first the second equation for obtaining x2(t) = e−tx20, then plug
in x2(t) to the third equation as input to obtain x3(t) = etx30 + 1

2(et− e−t)x20,
then plug in x3(t) to the first equation to obtain x1(t) = eαtx10 + 1

1−α(e(1−α)t−
1)x30 + ( 1

1−α(e(1−α)t − 1) − 1
1+α(e(1+α)t − 1))x20. For α = 1 or α = −1, the

relevant terms should be understood as the limit approaching the respective
value of α. By expressing x(t) = eAtx0, we obtain eAt.

(b) For what α is the pole placement problem solvable? . . . . . . . . . . . . . . . . . . . . . (3p)

Answer: α 6= 0. This is when the system is controllable.

(c) Let u = 0. Find all solutions x(t) that lie ∀t ≥ 0 on the plane D = {x ∈ R3 :
cx = 0}. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5p)

Answer: cx(t) = x2(t)+x3(t) = 0 ∀t ≥ 0 implies that ẋ2(t)+ẋ3(t) = x3(t) = 0.
Then x2(t) = x3(t) = 0 ∀t ≥ 0. From the first equation we have x1(t) =
eαtx1(0).

(d) Find u(t) = Kx that makes D invariant, i.e., cx(t) = 0,∀t ≥ 0 if cx(0) = 0.
(3p)

Answer: Again cx(t) = x2(t) + x3(t) = 0 ∀t ≥ 0 implies that ẋ2(t) + ẋ3(t) =
x3(t) + u(t) = 0, thus u = −x3 or u = x2 (since x2(t) + x3(t) = 0).

(e) For what α is every solution x(t) in D bounded when the control designed in
(d) is applied? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3p)

Answer: By keeping x2(t) + x3(t) = 0 or x3(t) = −x2(t) and using u = −x3
the system becomes ẋ1 = αx1, ẋ2 = 0, then α ≤ 0 will make all the solutions
bounded.

3. Consider the transfer matrix

R(s) =

[ 1
s+β

1
s+β

1
s+2

α
s+2

]
,

where α, β are real constants.

(a) Determine the McMillan degree of R(s). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (8p)

Answer: If β = 2 and α = 1, we have four elements of R(s) as all the minors.
Their least common denominator is s + 2, thus δ(R) = 1. Otherwise we have
either an order 2 minor 1

(s+2)(s+β) (if α 6= 1) or β 6= 2 with four order 1 minors,

in either case their least common denominator is (s+ 2)(s+ β), thusδ(R) = 2.
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(b) Find the standard reachable realization for the case β 6= 2. . . . . . . . . . . . . . . . (4p)

Answer: We have m = k = 2 and χ(s) = (s+ β)(s+ 2) = s2 + (2 + β)s+ 2β,
then

χ(s)R(s) =

[
2 2
β αβ

]
+

[
1 1
1 α

]
s.

Using the expression on p.40 in the compendium we obtain the realization.

(c) For the case α = 1, β 6= 2 find a minimal realization and verify your answer by
checking if C(SI −A)−1B = R(s). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (8p)

Answer: Since the two columns of R(s) are the same, we can first do a control-
lable realization only for u1, then replace u1 by u1+u2 in the state space model.
Then we have m = 2, k = 1 and χ(s) = (s + β)(s + 2) = s2 + (2 + β)s + 2β,
then

χ(s)R(s) =

[
2
β

]
+

[
1
1

]
s.

We have

A =

[
0 1
−2β −(2 + β)

]
, B =

[
0
1

]
, C =

[
2 1
β 1

]
.

Then we should change to

B =

[
0 0
1 1

]
.

4. Consider the optimal control problem

min
u
J =

∫ t1

0
uTudt+ x(t1)

TSx(t1) s.t. ẋ = Ax+Bu, x(0) = x0,

where (A,B) is controllable and S is positive definite.

Let u = −BTP (t1 − t)x denote the optimal control.

(a) Solve the Riccati equation to obtain P (t1 − t) by solving the adjoint system.
(Hint: to determine P is the same as determining P−1 if P is invertible) (10p)

Answer: By using the adjoint system, we have Y = exp(AT (t1 − t))S, X =
exp(−A(t1 − t)) +

∫ t1−t
0 exp(−As)BBT exp(−AT s)dsexp(AT (t1 − t))S.

P−1 = XY −1 = exp(−A(t1−t))S−1exp(−AT (t1−t))+
∫ t1−t
0 exp(−As)BBT exp(−AT s)ds.

(b) Compute limt1−t→∞ P (t1 − t) for the case A is a stable matrix. . . . . . . . . . .(4p)

Answer: If A is stable, then Y → 0 and X →∞, thus P−1 →∞.

(c) What are the eigenvalues of limt1−t→∞(A−BBTP (t1 − t)) for the case −A is
a stable matrix? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (6p)

Answer: If −A is stable, P−1 →
∫∞
0 exp(−As)BBT exp(−AT s)ds, which sa-

tisfies −P−1AT − AP−1 + BBT = 0. Thus, A − BBTP = −P−1ATP , which
has same eigenvalues as −AT thus as −A.

5. (a) Let C =
[
C1 0

]
and A =

[
A11 A12

A21 A22

]
, where C1 is an k×n1 matrix with rank

n1. The matrices A12 and A22 have dimensions n1 × (n − n1) and (n − n1) ×
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(n−n1) respectively. Show that (C,A) is observable if and only if (A12, A22) is
observable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(6p)

Answer: (C,A) is observable iff Cx(t) = 0 ∀t ≥ 0 implies x(t) = 0. C1x1(t) = 0
implies x1(t)

TCT1 C1x1(t) = 0, which implies x1(t) = 0 since C1 has full column
rank. Then A12x2(t) = 0, where ẋ2(t) = A22(t). A12x2(t) = 0 implies x2(t) = 0
iff (A12, A22) is observable.

(b) Consider the algebraic Riccati equation

ATP + PA− PBBTP + CTC = 0.

(1) Assume P is a real positive semidefinite solution. Show that kerP is
A-invariant (i.e, ∀x ∈ kerP, Ax ∈ kerP ) and kerP ⊂ kerC. . . . . . . . . . (4p)
Answer: Suppose x ∈ KerP . Multiplying both sides of the ARE by x:

PAx+ CTCx = 0,

similarly xTCTCx = 0. Therefore x ∈ KerC, which implies kerP ⊂ kerC.
Furthermore, this leads to that PAx = 0. Thus kerP is A-invariant.

(2) Show that if (C,A) is observable, then every positive semidefinite solution
P is positive definite. Hint: use the conclusions in (1) . . . . . . . . . . . . . . . (4p)
Answer: When (C,A) is observable, the only A-invariant subspace in
KerC (unobservable subspace) is {0}. Thus, kerP = {0}.

(c) Consider Kalman filter for discrete time linear systems as defined in Section 9.1
of the compendium. All the notations used below are also defined in Section
9.1, in particular, P (t) = E{(x(t) − EHt−1(y)x(t))(x(t) − EHt−1(y)x(t))T } and
Pt(t) = E{(x(t)− EHt(y)x(t))(x(t)− EHt(y)x(t))T }. Show that

Pt(t) = P (t)− P (t)CT [CP (t)CT +DRDT ]−1CP (t),

assuming that the matrix inverse exists. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (6p)

Answer: Pt(t) = E{(x(t) − EHt(y)x(t))(x(t) − EHt(y)x(t))T } = E{(x(t) −
EHt−1(y)x(t) − Kỹ)(x(t) − EHt−1(y)x(t) − Kỹ)T } = E{(x̃ − Kỹ)(x̃ − Kỹ)T }.
E{(x̃ − Kỹ)(x̃ − Kỹ)T } = P (t) − KE(ỹx̃T ) − E(x̃ỹT )KT + KE(ỹỹT )KT =
P (t) −KCP (t) − P (t)CTKT + K(CP (t)CT + DRDT )KT = P (t) −KCP (t).
Plug in K the conclusion follows.


