
CHAPTER 1

Introduction

Linear geometric control theory was initiated in the beginning of the
1970’s, see for example, [1, 7]. A good summary of the subject is the book
by Wonham [17].

The term “geometric” suggests several things. First it suggests that the
setting is linear state space and the mathematics behind is primarily linear
algebra (with a geometric flavor). Secondly it suggests that the underly-
ing methodology is geometric. It treats many important system concepts,
for example controllability, as geometric properties of the state space or
its subspaces. These are the properties that are preserved under coordinate
changes, for example, the so-called invariant or controlled invariant sub-
spaces. On the other hand, we know that things like distance and shape
do depend on the coordinate system one chooses. Using these concepts the
geometric approach captures the essence of many analysis and synthesis
problems and treat them in a coordinate-free fashion. By characterizing
the solvability of a control problem as a verifiable property of some con-
structible subspace, calculation of the control law becomes much easier. In
many cases, the geometric approach can convert what is usually a difficult
nonlinear problem into a straight-forward linear one.

The linear geometric systems theory was extended to nonlinear systems
in the 1970’s and 1980’s [11]. The underlying fundamental concepts are
almost the same, but the mathematics is different. For nonlinear systems
the tools from differential geometry are primarily used.

In the rest of the chapter, we use some typical problems and examples
to illustrate the basic ideas of geometric approaches. We begin by recalling
the basic notions of linear and nonlinear systems.

1.1. Linear and nonlinear systems

As we know, a linear control system can be written as follows:

(1.1) ẋ = Ax+Bu
y = Cx,

where x ∈ Rn is called the state, u ∈ Rm the input and y ∈ Rp the output,
and A, B and C are matrices with proper dimensions, either constant or
time-varying.
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For a linear system (1.1), the solution is given by

x(x0, t, t0, u(·)) = Φ(t, t0)x0 +
∫ t

t0

Φ(t, s)Bu(s)ds,

where x0 is the initial state and t0 the initial time. In particular, if A is con-
stant, then the transition matrix Φ(t, t0) = eA(t−t0). Thus for time invariant
systems one can always assume t0 = 0. One can easily see that solutions to
(1.1) satisfy the principle of superposition.

In contrast a nonlinear (affine) control system can be defined as:

(1.2)
ẋ = f(x) + g(x)u
y = h(x),

where f , g and h are nonlinear mapping with proper dimensions. If we let
f = Ax, g = B and h = Cx, (1.2) becomes a linear system.

For nonlinear systems, a closed-form solution is in general very difficult
to find and solutions in general do not satisfy the principle of superposition.
In addition, nonlinear control systems also exhibit many properties a linear
system does not have, some of which will be discussed in Chapter 8.

Let us end this section with an example of a linear system. The purpose
of the example is to show that we can model even quite complex practical
systems as linear systems.

Example 1.1 (Longitudinal motions of an aircraft). By longitudinal
motions of an aircraft, we mean the movement of an aircraft as if it were
constrained to move exclusively in a vertical plane. This is a very impor-
tant type of motion of an aircraft. It is possible to show that under perfect
geometrical and dynamical symmetry conditions, the linearized equations of
motion of any aircraft exhibit an exact longitudinal-lateral decoupling. The
full explanation of the model equations falls outside the scope of this work,
and can be found in [6].

In our notations, V stands for the velocity modulus, m is the mass of the
aircraft, T is the thrust force exerted by the engines and supposed to be act-
ing along the main body axis, D is the magnitude of the total aerodynamic
drag acting opposite to the velocity vector, L is the total aerodynamic mag-
nitude of the lift force in an orthogonal direction to the velocity, mg is the
gravity force acting at the center of gravity (CG) and pointing downwards
(flat Earth approximation). M is the total pitching moment around the axis
perpendicular to the plane of movement, α is the angle of attack of the air-
craft (angle between the velocity and the x-axis), γ is the angle of climb
(between the horizontal axis and the velocity), and θ = γ + α is the pitch
angle of the aircraft. By convention, the pitch rate (θ̇ in the longitudinal
motions) is denoted q.
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Figure 1. Variables for the aircraft model.
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Figure 2. Detailed system architecture

The linearized equations of motion are:

(1.3)

mΔV̇ = ΔT −mg cos γeΔγ − ΔD
mVeΔγ̇ = ΔL+ TeΔα+mg sin γeΔγ
Iq̇ = ΔM + zATP ΔT
Δθ̇ = q
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where I and zATP are some physical parameters. These are differential equa-
tions in incremental variables with respect to any admissible equilibrium
condition (denoted with subscripts e). For example, V = Ve + ΔV ; γ =
γe +Δγ; α = αe +Δα. Around each flight equilibrium condition, the pilot
can control whether to increase or decrease the thrust of the engines which is
ΔT . This he (or she) does by adjusting the throttle lever δth . If he wants to
correct the attitude of the aircraft, he deflects the stick, leading to changes
in the deflection angles of the elevator δE and Canards δC if the airplane
has Canards. Thus, we assume here that the pilot controls ΔT, ΔL, ΔD
and ΔM via δE , δC and δth by a linear mapping. An equivalent version of
(1.3) written in compact vector notation is

(1.4) ẋ = Ax + Bu

with state vector x = [ΔV Δγ qΔθ]′ and inputs u = [δE δC δth]′. The ele-
vator and Canard actuator dynamics are assumed so fast, that no states are
used to represent them. The situation is depicted in Fig. 2. Thus, neglected
actuator dynamics means here u1 = δE and u2 = δC .

Naturally, we need to include external disturbances such as turbulence
to make the model complete.

1.2. The geometric approach

We use an example to introduce some of the problems we will study in
this course.

Example 1.2 (Lateral control of a car). Here is the so-called single-track
dynamic model for car steering: where αf is the front tire sideslip angle, r
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Figure 3. Single-track model for car steering

yaw rate, δf the steering angle and v velocity. Under the assumptions that
the car has an ideal mass (m) distribution (i.e. the momentum J = mlrlf),
that the velocity of the car is constant, and that the sideslip angle is small,
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we can get a simplified model of the lateral motion as follows:

(1.5)
α̇f = a11αf + r + δ̇f
ψ̇ = r
ṙ = a21αf + a22r + b21δf + d(t),

where ψ the orientation of the car, and the a and b coefficients depend on
the physical parameters of the car.

The disturbance d(t) could be for example, side wind or roughness on the
road surface.

With this example, several interesting problems arise:
(1) Can we design a driver assistant that decouples the yaw motion

from the lateral motion? So the driver can focus on controlling the
lateral motion.

(2) Can we design an automatic driver that rejects d(t) from affecting
the orientation?

(3) Can we estimate the unknown d(t) by measuring ψ and r? These
estimations are useful if we have, for example, a camera or a manip-
ulator mounted on top of the car, which also needs to be controlled.

All these problems, we hope, will find solutions in this course.
Here are a few samples of the problems we will study in this course.

Problem 1.1 (Disturbance decoupling). Consider the system

(1.6) ẋ = Ax+Bu+ Ew
y = Cx,

where x ∈ Rn, u is the control signal and w is an external disturbance that
cannot be measured. The question is if there exits a state feedback

u = Fx+ v

such that the output y is unaffected by the disturbance w.

Suppose such a feedback exists. Then by plugging in the control, we have

(1.7) ẋ = (A+BF )x+Bv + Ew
y = Cx.

The fact that the output y is unaffected by the disturbance w implies that
the ith derivative y(i)(t) for any i ≥ 1 and any t does not depend on w. For
the sake of simplicity, let us first assume v = 0. Since

y(1)(t) = C(A+BF )x(t) + CEw(t),

we must have CE = 0. Deductively, under the assumption C(A+BF )i−2E =
0, i ≥ 2, we have

y(i)(t) = C(A+BF )ix(t) + C(A+BF )i−1Ew(t).

Thus, we must have

C(A+BF )i−1E = 0, ∀i ≥ 1.
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By Cayley-Hamilton Theorem, it suffices to have the equality hold only up
to i = n. On the other hand, if we can find an F that satisfies the above
equations, then the problem is solved.

However, the equations are highly nonlinear, thus difficult to solve. In
Chapter 3 we will use the idea of “controlled invariance” to reduce the
problem into a linear one.

Problem 1.2 (Output regulation). Consider

(1.8) ẋ = Ax+Bu+ Ew
e = Cx−Dw,

where w models both the disturbance to reject and the reference signal to track
(We can consider y = Cx as the output. Thus w1 = Dw is the reference to
track, while the rest of w is disturbance). Furthermore, we assume that w is
generated by the following system:

(1.9) ẇ = Γw.

A system that generates an input signal is sometimes called an exogenous
system. The problem of output regulation is to find a feedback control law
such that the closed-loop system is asymptotically stable when w is set to
zero and such that e(t) tends to zero as t tends to ∞.

The difference with the disturbance decoupling problem is that here we
only require the output to reject the disturbance in the steady state, and
we also have some knowledge about the disturbance. The discussion of this
problem in Chapter 7 will lead to the famous “internal model principle”
[7]. Surprisingly we will show that this problem is generically solvable while
the disturbance decoupling problem is not. Not surprisingly, the idea of
controlled invariance also plays a central role here.

Problem 1.3 (Controllability under constraints). Consider the system

(1.10) ẋ = Ax+Bu
y = Cx,

Let K be a subspace of Rn. The question is which subset R ⊆ K can be
reached in finite time t1 from any initial point in K with controls of the
form

u = Fx+Gv,

if we require that the trajectory {x(t) : t ∈ [0, t1]} should be in K.

This problem is quite relevant in many applications, for example, in path
planning for mobile systems.

In this set of lecture notes, we will also discuss some system concepts
for nonlinear systems. We give an example here to illustrate why sometimes
one has to use the nonlinear tools.

Example 1.3 (Car steering). In this example, we revisit the car steering
problem. However, the focus is on the longitudinal control. For this purpose,
the steering system of a car can be modeled as
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Figure 4. The geometry of the car-like robot, with position
(x, y), orientation θ and steering angle φ.

(1.11)
ẋ = v cos(θ)
ẏ = v sin(θ)
θ̇ = v

L tanφ,

where x and y are Cartesian coordinates of the middle point on the rear
axle, θ is the orientation angle, v is the longitudinal velocity measured at
that point, L is the distance of the two axles, and φ is the steering angle. In
this case v and φ are the two controls.

Let us reduce the complexity by defining u1 = v, u2 = v
L tan φ, then

(1.12)
ẋ = cos(θ)u1

ẏ = sin(θ)u1

θ̇ = u2.

Sometimes, this is called unicycle model. If we linearize (1.12) around a
point (x0, y0, θ0), we have

(1.13)
ẋ = cos(θ0)u1

ẏ = sin(θ0)u1

θ̇ = u2,

which is obviously not controllable. However, using geometric tools we will
show in Chapter 8 that the nonlinear system (1.12) is controllable (This is
what you, as a driver, expected, right?).

The notes are organized as follows.
In Chapter 2, invariant and controlled invariant subspaces will be dis-

cussed; In Chapter 3, the disturbance decoupling problem will be introduced;
In Chapter 4, we will introduce transmission zeros and their geometric inter-
pretations; In Chapter 5, noninteracting control and tracking will be stud-
ied as applications of the zero dynamics normal form; In Chapter 6, we
will discuss some input-output behaviors from a geometric point of view; In
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Chapter 7, we will discuss the output regulator problem in some detail. In
Chapter 8, we will extend some of the central concepts in the geometric con-
trol to nonlinear systems. Finally, in Chapter 9, some robotic applications
will be discussed.




