
CHAPTER 9

Multi-Robotic Systems

The topic of multi-robotic systems is quite popular now. It is believed
that such systems can have the following benefits:

• Improved performance (“winning by numbers”)
• Distributed sensing
• Distributed actuation
• Fault tolerance

On the other hand, such systems also introduce new problems such as in-
terference, communication cost and uncertainty.

In this chapter we focus on cooperative systems.

9.1. Consensus problem

We begin by considering a flock of N birds. Each bird flies with the same
speed but with possibly different directions. Namely

vi = (v cos θi, v sin θi)
T ,

where θi is the heading of bird i, and for the sake of simplicity, we assume
the birds fly on a plane.

Now suppose for each bird, it changes its heading by the following model:

θ̇i = ui,

or

θi(t+ 1) = θi(t) + ui(t) := ωi(t).

An interesting question is how each bird should update its heading so even-
tually we have

θ1(t) = · · · = θN (t).

It turns out

ωi(t) =
1

N

N∑
j=1

θj(t)

will do the trick. One thing we should be careful here is to calculate the
average heading properly. We can rewrite the control as

ωi(t) = θi(t) +
1

N

∑
j 6=i

(θj(t)− θi(t)),

79

80 9. MULTI-ROBOTIC SYSTEMS

or,

(9.1) ui(t) =
1

N

∑
j 6=i

(θj(t)− θi(t)).

If we use a local coordinate θi ∈ (−π, π], then ωi(t) can be calculated prop-
erly.

A problem with the controller (9.1) is that each bird needs to know the
relative headings of all the other birds. In the following we show that this is
not necessary.

Now we consider a system of N agents:

(9.2) ẋi = ui, i = 1, · · · , N

where xi can be viewed as heading, position or other quantities.
We define the consensus problem as follows:

Consensus problem:
Find ui(t) such that as t→ ∞ we have

x1(t) = x2(t) = · · · = xN (t),

here we assume that agent i can only detect relative errors xj − xi of its
neighbors, namely j ∈ Ni.

Similar to the flocking problem, we consider a controller of the following
type:

(9.3) ui(t) =
∑
j∈Ni

aij(xj − xi),

where aij are positive weights. If we let x = (x1, · · · , xN)T , then

(9.4) ẋ = −Lx,

where

L = D −A = diag(
∑
j 6=1

a1j , · · · ,
∑
j 6=N

aNj)− [aij].

Now define

V (x) = xTLx =
1

2

N∑
i=1

∑
j∈Ni

aij(xj − xi)
2.

Proposition 9.1. The consensus problem is solved, namely as t → ∞,
x1(t) = · · · = xN (t) in (9.4), if and only if

(9.5) V (x) = 0 ⇐⇒ x1 = x2 = · · · = xN .

In fact, in this case

lim
t→∞

xi(t) =
1

N

N∑
i=1

xi(0).

9.1. CONSENSUS PROBLEM 81

9.1.1. Connection to graph theory. An undirected graph G of order
N consists of a vertex set V = {1, 2, · · · , N} and an edge set E = {(i, j) :
i, j ∈ V} ⊂ V × V. A weighted adjacency matrix A = [aij] ∈ RN×N , where
aii = 0 and aij = aji ≥ 0. aij > 0 if and only if there is an edge between
agent i and agent j (i.e., aij = aji > 0 ⇔ (i, j) ∈ E) and the two agents
are called adjacent (or they are mutual neighbors). The set of neighbors of
vertex i is denoted by Ni = {j ∈ V : (i, j) ∈ E , j 6= i}. The Laplacian

Node i

Node j

Node k

aij

aik

Figure 1

L = [lij] ∈ RN×N of a weighted graph G is defined as

lij =

∑
k 6=i

aik, j = i,

−aij , j 6= i.

By the definition, every row sum of L is zero.
If there is a path between any two vertices of a graph G, then G is

connected, otherwise disconnected.
The following lemma shows some basic properties of the Laplacian L.

Lemma 9.2. Let L be the Laplacian of an undirected graph G with N
vertices, l1 ≤ · · · ≤ lN be the eigenvalues of L. Then

(1) 0 is an eigenvalue of L and 1N is the associated eigenvector, where
1N = (1, 1, · · · , 1)T . Namely, L1N = 0;

(2) If G is connected, then 0 is the algebraically simple eigenvalue of L

and l2 = min
ξ 6=0,ξ⊥1N

ξTLξ
ξT ξ

> 0, which is called the algebraic connectiv-

ity of G;
(3) If 0 is the simple eigenvalue of L, then it is an n multiplicity eigen-

value of L⊗ In and the corresponding eigenvectors are 1N ⊗ei, i =
1, · · · , n.

Now let us go back to the consensus problem.

Proposition 9.3. The consensus problem is solved if and only if the
associated graph is connected.

82 9. MULTI-ROBOTIC SYSTEMS

Now let us consider a set general linear system:

(9.6) ẋi = Axi +Bui, i = 1, · · · , N

where xi ∈ Rn, ui ∈ Rm. Define the relative state error for agent i as

zi =
∑
j∈Ni

(xi − xj).

The consensus is said to be achieved using local information if there is a
local state error feedback control

ui = Kzi

such that

lim
t→∞

‖xi − xj‖ = 0, ∀i, j.

After plug in the control, it is now well known that the consensus prob-
lem is equivalent to the simultaneous stabilization problem of the following
systems:

(9.7) ẋi = Axi + λiBK, i = 2, · · · , N,

where 0 = λ1 < λ2 ≤ · · · ≤ λN are eigenvalues of the graph Laplacian L.
Note that the graph is assumed to be undirected and connected.

Proposition 9.4. Consider a finite set of linear systems

(9.8) ẋi = Axi + αiBui, i = 1, · · · , N,

where (A,B) is controllable, and αi > 0. Then there exists

ui = Kxi

such that A+ αiBK is Hurwitz for i = 1, · · · , k.

This proposition can be easily proven as follows. Assume α1 is the small-
est. Since (A,B) is controllable, the algebraic Riccati equation

ATP + PA− α1PBB
TP +Q = 0

where Q > 0, has a solution P > 0. Thus for K = −BTP we have

(A− αiBB
TP)TP + P (A− αiBB

TP) = −Q− (2αi − α1)PBB
TP

i = 1, · · · , N .
Based on the proposition, we can show easily that as long as (A,B) is

controllable and the associated graph is connected, the consensus can be
reached. In this case, the consensus state is in general not a constant, it is
governed by the following equation:

˙̄x = Ax̄.

9.1. CONSENSUS PROBLEM 83

9.1.2. Consensus and distributed optimization. 1 One application
of multi-agent consensus is to do optimization in a decentralized way. For
large-scale networked complex systems, since the lack of centralized author-
ity, it is difficult to do optimization in a normal way. For standard iterative
methods, global information may needed for each node/agent in the network
at each iteration. However, those global information is extremely difficult to
obtain in many practical large-scale networks, e.g., Internet, sensor networks,
and economic networks. The idea of distributed optimization is to use local
communication and cooperation to achieve optimal/suboptimal solutions to
the global objective.

Consider a network with n cooperative agents towards a single objective:

(9.9) min

n∑
i=1

fi(x)

Can each agent reach the desired global minimizer by using only local in-
formation, namely by communicating with only neighboring agents in the
network?

Figure 2. A communication network where x is the global
state variable, x(i) is the local estimation of the optimal so-
lution for agent i, and fi(x) is the local cost for agent i.

The standard steepest descent method tells that the update of the vari-
able x should be

(9.10) x(i)(k + 1) = x(i)(k)− αi
k

n∑
i=1

∇fi(x(i)(k))T ,

where αi
k is the step-length chosen by some line-search algorithm. However,

the update requires all the gradient information ∇fi(x(i)(k)) for each agent,
which can be a problem in practice. One approach to avoid using all gradients
is called the two-step approach:

1The contribution by Yuecheng Yang and Wendy Song is acknowledged.

84 9. MULTI-ROBOTIC SYSTEMS

• step 1: Each agent take step in gradient descent direction with the
same step-length:

(9.11) x̂(i)(k + 1) = x(i)(k)− αk∇fi(x(i)(k))T .

• step 2: Taking the network-wide average:

(9.12) x(i)(k + 1) =
1

n

n∑
j=1

x̂(j)(k).

• The combination of the two steps recovers that standard gradient
method with the same step length αk

n :

x(i)(k + 1) =
1

n

n∑
j=1

(
x(j)(k)− αk∇fj(x(j)(k))T

)
=

1

n

n∑
j=1

x(j)(k)− αk

n

n∑
j=1

∇fj(x(j)(k))T

= x(i)(k)− αk

n

n∑
j=1

∇fj(x(j)(k))T .

Note that network-averaging is possible with peer-to-peer communication
within a connected graph (consensus). Therefore, this approach is a dis-
tributed steepest descent algorithm requires only local gradient information.

The two step approach is a distributed algorithm and it converges due
to the convergence of both the steepest descent algorithm and the consen-
sus algorithm. However, within each optimization step, the agents need to
exchange enough information to reach network average in order to move on
to the next iteration. The structure of the network will limit the conver-
gence rate of the algorithm. Unfortunately, the agents have to wait until
they reach consensus because the errors will accumulate during each itera-
tion otherwise. One extreme algorithm that shorten the averaging time is to
do gradient based optimization and neighborhood averaging simultaneously.
This results to the following interleaved version of the approach:

(9.13) x(i)(k + 1) =
1

‖Ni‖
∑
j∈Ni

x(j)(k)− α∇fi(x(i)(k))T ,

for a fixed step-length α, where Ni denotes the set of neighboring agents of
i. The convergence of this algorithm can be proven.However, the limit point
may not be the global minimizer. The bounds for the error can be found in
the literature [14].

Example
The objective function is

∑3
i=1 fi(x) = 3x2 − 7x + 6 and the global

optimal solution is

x∗ = 7/6 ≈ 1.1667.

9.1. CONSENSUS PROBLEM 85

Figure 3

The two-step algorithm (9.11) & (9.12), gives the following iterates with the
fixed step-length α = 0.1:

Iteration 0 1 2 3 4 5 10 20 30 50

x(1) 1 1.0333 1.0600 1.0813 1.0984 1.1121 1.1488 1.1647 1.1665 1.1667

x(2) 1 1.0333 1.0600 1.0813 1.0984 1.1121 1.1488 1.1647 1.1665 1.1667

x(3) 1 1.0333 1.0600 1.0813 1.0984 1.1121 1.1488 1.1647 1.1665 1.1667

The interleaved algorithm (9.13), gives the following iterates with the fixed
step-length α = 0.1:

Iteration 0 1 2 3 4 5 10 20 50 100

x(1) 1 1 1.1000 1.1067 1.1319 1.1424 1.1833 1.2074 1.2127 1.2128

x(2) 1 1.2000 1.1933 1.2424 1.2584 1.2809 1.3391 1.3750 1.3829 1.3830

x(3) 1 0.9500 0.9500 1.9717 1.0071 1.0327 1.1191 1.1714 1.1829 1.1830

One can calculate the equilibrium of the iteration by solving the following
equations:

x(1) + x(2)

2
− 4α(x(1) − 1) = x(1)

x(1) + x(2) + x(3)

3
− 2α(x(2) − 2) = x(2)

x(2) + x(3)

2
− α = x(3)

For positive α, the solution to this system of equations is

x(1) =
48α2 + 18α

48α2 + 14α

x(2) =
80α2 + 18α

48α2 + 14α

x(3) =
−96α3 + 52α2 + 18α

48α2 + 14α

Hence, the agents will not reach consensus when α > 0. When α → 0, the
algorithm converges to a solution x(1) = x(2) = x(3) = 9/7, which is not the
theoretical global optimal.

86 9. MULTI-ROBOTIC SYSTEMS

9.2. Formation control

In the maturing field of mobile robot control, a natural extension to the
traditional trajectory tracking problem is that of coordinated tracking. In
its most general formulation, the problem is to find a coordinated control
scheme for multiple robots that make them maintain some given, possibly
time-varying, formation at the same time as the robots, viewed as a group,
executes a given task. The possible tasks could range from exploration of
unknown environments, navigation in hostile environments where multiple
robots make the system redundant and thus robust, to coordinated path
following.

The multi-agent system that we consider is given by m mobile robots,
each of which is governed by its own set of system equations

(9.14)
żi = fi(zi) + gi(zi)ui

xi = h(zi),

where zi ∈ <pi is the state, ui ∈ <ki is the control, and xi ∈ <n are geometric
variables used for defining the formation in <n. The m robots should keep a
certain relative position and orientation, while moving along a given path.
If the formation keeping is perfect, then we can treat the polygon formed
by having the robots as vertices as a rigid body and the problem can be
restated as that we want to keep the formation while letting a chosen point
of the polygon x0 (ex. the geometric center) move along a given path.

Let us first define what we mean by a formation:

Definition 9.1. (Formation Constraint Function) Given a differ-
entiable, positive definite (F = 0 only at one point) map F : <n× . . .×<n →
<+. If F (x1, . . . ,xm) is strictly convex, then we say that F (x1, . . . ,xm) is a
formation constraint function. The shape and orientation of the robot for-
mation is uniquely determined by (x1, . . . ,xm) = F−1(0).

It is obvious that for a given formation, the corresponding formation
constraint function is not unique. For example, for a given polygon in <2,
one can choose either

F =

m∑
i=2

[(‖xi−1 − xi‖2 − di)
2 + (‖xi‖2 − ri)

2] + ‖x1 − a1‖2

or

F =

m∑
i=1

‖xi − ai‖2.

From the implementation point of view, the former is preferable since the
relative distance is coordinate-free and easier to measure than the absolute
position.

We, of course, want to allow for the possibility of having a moving for-
mation, and we thus need to specify a motion for the virtual leader, x0. We

9.2. FORMATION CONTROL 87

choose to parameterize the trajectory for x0 as

(9.15) x0 = p0(s0),

where we assume that the trajectory is smooth, i.e. ‖∂p0(s0)
∂s0

‖ 6= 0 for all s0.
The reason for calling x0 together with its dynamics a virtual leader is

because of the role it plays. Using this terminology, our additional task is
to design m new virtual robots for the individual robots to follow. We are
thus free to design the evolution of these additional virtual vehicles, and
we ignore the question concerning how to actually track these new virtual
vehicles for the time being.

In light of the previous paragraph, it is more convenient to consider a
moving frame with coordinates centered at x0. In the new coordinates we
have x̃ = x−x0. Let the desired trajectories (subscript d), or virtual vehicles,
be defined in the moving frame by

(9.16)
x̃id = pi(si), i = 1, . . . ,m
˙̃xid = ∂pi(si)

∂si
ṡi,

where ∂pi(si)
∂si

and ṡi ∈ < should be chosen in a systematic fashion so that
the formation constraint is respected.

The solution we propose is to let the desired trajectories be given by the
steepest descent direction to the desired formation, i.e., we set

(9.17)
∂p(s)

∂s
= −∇F (x̃d),

where we have grouped the contributions from the different robots together
as

(9.18)

∇F (x̃d)
T = (∂F (x̃d)

∂x̃1d

T
, . . . , ∂F (x̃d)

∂x̃md

T
)

p(s)T = (pT1 (s1), . . . , p
T
m(sm))

sT = (s1, . . . , sm)
x̃T
d = (xT

1d − xT
0 , . . . ,x

T
md − xT

0).

Remark 9.1. Equation (9.17) defines a group of ordinary differential
equations with respect to s. Since F (x̃d) is well defined (in many cases just
a polynomial), calculating (9.17) online is not a problem.

The idea now is to let the evolution of the different virtual vehicles
be governed by differential equations containing error feedback in order to
make the control scheme robust. This idea can be viewed as a combination
of the conventional trajectory tracking, where the reference trajectory is
parameterized in time, and a dynamic path following approach, where the
criterion is to stay close to the geometric path, but not necessarily close to
an a priori specified point at a given time.

We should point out that even using the same methodology, an alter-
native design would be that one only designs the dynamics for the virtual
leader, and then uses the formation constraint (can be viewed as a rigid body

88 9. MULTI-ROBOTIC SYSTEMS

constraint) to specify the motion of the other virtual vehicles. The reason
for designing virtual vehicles individually here is that we, by actively con-
trolling the evolution of the reference points, gain additional control power,
and from the implementation point of view, this is more robust with respect
to measurement errors and uncertainties in localization. Although with this
approach, the formation constraint is not necessarily respected initially by
the virtual vehicles, we will show that they converge to the exact formation
exponentially fast, provided the actual tracking errors are bounded.

In order to accomplish this, we define the evolution of the reference
points as

(9.19) ṡi = ce−αiρi , i = 1, . . . ,m,

where c, αi > 0 and ρi = ‖xi − xid‖ = ‖x̃i − x̃id‖. As already mentioned, we
want the motion of s0 to capture how well the formation is being respected.
Define

ρa =

m∑
i=1

ρi

and set

(9.20) ṡ0 =
c0

‖∂p0(s0)
∂s0

‖
e−α0ρa .

With these designs we have the following stability theorem:

Theorem 9.5. (Coordinated Tracking and Formation Control)
Under the assumption that the real robots track their respective reference
trajectory perfectly, it holds that

(9.21) lim
t→∞

F (x̃d) = 0.

Remark 9.2. This theorem shows that we have quite some freedom in
initializing the virtual vehicles and the algorithm is robust to measurement
noises.

Proof:

(9.22)
d

dt
F (x̃d) = ∇F (x̃d)

T ˙̃xd = −
m∑
i=1

‖ ∂F
∂x̃id

‖2ce−αiρi .

Now assume that we have perfect tracking, i.e. ρi = 0, i = 1, . . . ,m. This
assumption, combined with the assumption that F is positive definite and
convex, implies that d

dtF (x̃d) is negative definite since otherwise F would
have a local minima. This concludes the proof.

Proposition 9.6. If all the tracking errors are bounded, i.e. it holds
that ρi ≤ ρ <∞, i = 1, . . . ,m, then

(9.23) lim
t→∞

F (x̃d) = 0.

9.3. FORMATION CONTROL WITH LIMITED SENSOR INFORMATION 89

The proof of this corollary is just a straight forward extension of the
proof of the previous theorem. This corollary is furthermore very useful
since one typically does not want ρ = 0 due to the potential chattering that
such a control strategy might give rise to. Instead it is desirable to let ρ > 0
be the look-ahead distance at which the robots should track their respective
reference trajectories.

9.3. Formation control with limited sensor information

Many of the already available control algorithms for a robot tracking a
moving target are designed to work under ideal conditions and with perfect
sensor data. Much effort is still needed in order to design robust algorithms
that can operate in real time and tolerate large measurement errors without
needing to use computationally heavy filtering algorithms before data can
be used.

Let us assume that there are n mobile robots, R1, ..., Rn, where R1 is
the leader of the formation or the target. We assume that the motion of any
given robot, Ri, i > 1, can be modeled as

ẋi = vi cosφi

ẏi = vi sinφi(9.24)

φ̇i = ωi,

where xi and yi are the position coordinates and φi denotes the orientation
angle of the robot with respect to a global coordinate system.

If the control aim is to keep a fixed distance and bearing angle to the
neighbor closest ahead, we end up with a line formation as in fig. 4.

Tv

Tβ

T(X ,Y)T

β v

v

d

v

Figure 4. Horizontal tracking and formation keeping.

Now let d0 be the desired distance between two robots while di is the
actual distance between Ri and Ri−1 as measured by the sensors on Ri.
In the same way, let 0 ≤ β0 ≤ π

2 be the desired relative angle between
two robots (see fig. 4) while βi is the corresponding measured value for Ri,
i.e., the measured angle to Ri−1 with respect to Ri’s angle of orientation.
We also introduce the notation γi = φi − φi−1 to denote the difference in

90 9. MULTI-ROBOTIC SYSTEMS

orientation between two adjacent robots. For i = 2, ..., n, the system (9.24)
can be rewritten in terms of the measured units di and βi as

ḋi = −vi cosβi + vi−1 cos(γi + βi)

γ̇i = ωi − ωi−1(9.25)

β̇i = −ωi +
vi
di

sinβi −
vi−1

di
sin(γi + βi).

This is apparently a cascaded system due to the appearance of vi−1 and
ωi−1. Our control objective can now be defined as :
Given v1(t) and ω1(t), find control vi(t) and ωi(t) such that for i = 2, ..., n

di → d0, γi → 0, βi → β0

as t→ ∞ and 0 ≤ β0 ≤ π
2 .

Let ∆di = di − d0 and ∆β0 − βi. We can then rewrite the system (9.25)
as

∆ḋi = −vi cos(∆βi − β0) + vi−1 cos(∆βi − γi − β0)

γ̇i = ωi − ωi−1(9.26)

∆β̇i = ωi +
vi sin(∆βi − β0)− vi−1 sin(∆βi − γi − β0)

d0 +∆di
,

with the control objective: Given v1(t) and ω1(t), find control vi(t) and ωi(t)
such that for i = 2, ..., n

∆di → 0, γi → 0,∆βi → 0

as t→ ∞ and 0 ≤ β0 ≤ π
2 .

Note that when β0 = 0 for all vehicles, the formation is a vertical line
and when β0 = π

2 the formation is a horizontal line. Apparently no simple
controller can cover the whole range of β0 from 0 to π

2 . In the rest of this
section we present two control algorithms that together will cover the whole
range.

9.3.1. Serial formation control. Controlling the formation when β0
is close or equal to zero is relatively easy, especially if we do not require
γi → 0. For β0 = 0 it could, for example, be achieved by defining a reference
point (x0, y0) on the robots axis of orientation at a distance d0 from the
center of the robot, so that

x0 = xi + d0 cosφi

y0 = yi + d0 sinφi.(9.27)

The reference point can then be driven towards (xi−1, yi−1) with a propor-
tional control that is globally stable. Similarly, we can define the reference
point to lie at an angle β0 from the axis of orientation. The robot will then
follow the target with a tracking angle β0. By choosing the reference point
as in this way we obtain not only a point that can be driven arbitrarily
close to the target/leader without causing the angle to target to be un-
defined. We also obtain control of the robots orientation, since controlling

9.3. FORMATION CONTROL WITH LIMITED SENSOR INFORMATION 91

(x0, y0) towards the center of the target, (xi−1, yi−1), means simultaneously
controlling the angle of orientation so that the relative angle to target, βi,
approaches β0.

The expressions for the velocity vi and angular velocity ωi of Robot Ri,
corresponding to the control described above are

vi =
kdi cos(βi − β0)− kd0 + vi−1 cos(γi + β0)

cos(β0)

ωi =
kdi sin(βi)− kd0 sin(β0)− vi−1 sin(γi)

d0 cos(β0)
.(9.28)

Proposition 9.7. With the control (9.28), (x0(t), y0(t)) converges to
(xi−1(t), yi−1(t)) as t→ ∞ and 0 ≤ β0 <

π
2 .

The control is globally stable and therefore also very robust, but it will
obviously become singular as β0 approaches π

2 .

9.3.2. Parallel formation control. When the desired bearing β0 is
equal to π

2 , the serial formation control apparently does not work. In fact,
parallel tracking is quite different from serial tracking in the sense that it
is not really designed in order to follow a target, but rather to predict the
motion of the target and to move accordingly.

The prediction of the targets motion can be done in more or less sophis-
ticated ways, depending on which information that is available. With full
information on the speed and angular velocity of the target, the robot can
do a very good prediction of the target motion, under the assumption that
the motion of the target is smooth. If the speed and angular velocity of the
target is not directly accessible, estimations can be made based on measure-
ments of the targets position from at least one step back in time. Estimations
made from noisy sensor data tend to increase measurement errors in a very
unfortunate way, and especially if the amount of data saved from previous
time steps is small, the control algorithm tend to become quite sensitive to
errors. A more robust but less sophisticated approach to the problem is to
design a control with the main objective to correct any positioning errors,
rather than trying to calculate the motion of the target. One example of this
is the control algorithm we shall use in this paper.

Using the same notations for angles and distances as before, we propose
our controls for the velocity vi and angular velocity ωi of Robot Ri as

ωi = c1∆βi − c2(d0 − d sin(βi))− c3γi

vi = c4vi−1 + c5∆di cos(βi)− c6∆βi,(9.29)

where when i = 2 v1 = vT is an estimate of the velocity of the target and
c1, ..., c6 are positive constants of which c4 should ideally be equal to one.

Proposition 9.8. Suppose the target speed vT (t) and its time derivative
are bounded, and |vT (t)| ≥ v0 > 0, Then the cascaded system (9.25) with
control (9.29) is locally exponentially stabilized around the equilibrium (di =
d0, γi = 0, βi =

π
2 .

