
Mathematical Systems Theory: Advanced Course

Exercise Session 4

1 Solving Sylvester equation

In control theory, we often need to solve Sylvester equations, as can be seen
in Chapters 6 & 7 in the lecture notes. Here, we will discuss the solvability
of the equation and explain how to solve it.

Suppose that A ∈ Rn×n, B ∈ Rm×m and C ∈ Rn×m are given. The
Sylvester equation is defined as

AX − XB = C.

Solvability condition

The Sylvester equation has a unique solution X ∈ Rn×m if and only if

σ(A) ∩ σ(B) = ∅,

where σ(·) denotes the spectrum (i.e., the set of all eigenvalues) of a matrix.
Note. An important special case of the Sylvester equation is the Lyapunov
equation:

AX + XAT = C,

namely, B := −AT .

How to solve the Sylvester equation?

The Sylvester equation is a linear equation, and hence, it is not difficult to
solve. Indeed, we can rewrite the equation as

(Im ⊗ A − BT ⊗ In)vec X = vec C,

where ⊗ means the Kronecker product and vec X is the column expansion
of a matrix X. (But you do not need this transformation in this course.)

In some simple cases, we can solve the Sylvester equation by means of
direct calculations. See Examples below.
Note. In Matlab, the command lyap.m solves the Sylvester equation.
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2 Output tracking input

Consider a SISO system:

(Σ)

{
ẋ = Ax + bu
y = cx,

where A is a stable matrix, and an exosystem:{
ẇ = Γw
u = qw,

where Γ is an antistable matrix. In addition, we assume that the controllable
pair (A, b) and the observable pair (q,Γ) are given.

Our task is to design a vector c so that the output y tracks the input u
asymptotically. Such c can be obtained by solving the following two equa-
tions. One is a Sylvester equation

AΠ − ΠΓ = −bq

with respect to Π, and the other is a linear equation

cΠ = q

with respect to c. (To understand why the c obtained in this way satisfies
our requirement, read the discussions in page 46 & 48 of the lecture notes).
Due to Theorem 6.4 in the lecture notes, such c exists if and only if dim A ≥
dim Γ.

Example

Consider the following SISO system:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ẋ =

[
0 1
−1 −2

]
︸ ︷︷ ︸

=:A

x +

[
0
1

]
︸ ︷︷ ︸

=:b

u,

y = cx.

We will investigate, for various choices of c, how the output y tracks the
sinusoidal input u:

u(t) = r sin(ωt + φ).
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This type of input can be considered as an output of an exosystem:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
ẇ1

ẇ2

]
=

[
0 ω
−ω 0

]
︸ ︷︷ ︸

=:Γ

[
w1

w2

]
,

[
w1(0)
w2(0)

]
=

[
r sinφ
r cos φ

]

u =
[

1 0
]

︸ ︷︷ ︸
=:q

[
w1

w2

]

We set r = ω = 1 and φ = 0 in this example. (But we pretend that we do
not know r and φ when designing c.)

The outputs y are shown in Figure 1 for the cases where c =
[

1 0
]
,

c =
[

0 1
]
, c =

[
1 1

]
and c =

[
0 2

]
. (We set the initial state as

x(0) =
[

1 1
]T

.) As can be seen in the figure, the output y tracks the

input u asymptotically in the case where c =
[

0 2
]
.
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(a) c = (1, 0)
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(b) c = (0, 1)
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(c) c = (1, 1)
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(d) c = (0, 2)

Figure 1: Output y for various c
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Now, a question is how to design a “best” c, in the sense that the output y
tracks the input u asymptotically. Due to Proposition 6.2 and the discussion
in page 48, we first solve a Sylvester equation

AΠ − ΠΓ = −bq,

with respect to Π, and then solve a linear equation

cΠ = q,

with respect to c. The latter equation is solvable since dimA ≥ dim Γ (see
Theorem 6.4 in the lecture notes).

The Sylvester equation AΠ − ΠΓ = −bq can be solved as follows.[
0 1
−1 −2

]
︸ ︷︷ ︸

A

[
π11 π12

π21 π22

]
︸ ︷︷ ︸

Π

−
[

π11 π12

π21 π22

]
︸ ︷︷ ︸

Π

[
0 1
−1 0

]
︸ ︷︷ ︸

Γ

= −
[

0
1

]
︸ ︷︷ ︸

b

[
1 0

]
︸ ︷︷ ︸

q

⇔

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

π21 + π12 = 0
π22 − π11 = 0
−π11 − 2π21 + π22 = −1
−π12 − 2π22 − π21 = 0

⇔ Π =

[
π11 π12

π21 π22

]
=

1
2

[
0 −1
1 0

]

Then, the equation cΠ = q is solved as

[
c1 c2

]
︸ ︷︷ ︸

c

1
2

[
0 −1
1 0

]
︸ ︷︷ ︸

Π

=
[

1 0
]

︸ ︷︷ ︸
q

⇒
{

c2/2 = 1
−c1/2 = 0

⇒ c =
[

c1 c2

]
=
[

0 2
]
.

The obtained c coincides with the best c in the simulation result above.

3 Error feedback output regulation

Consider a MIMO system⎧⎪⎨
⎪⎩

ẋ = Ax + Bu + Pw
ẇ = Sw
e = Cx − Qw,
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with the assumptions that

• (A,B) is stabilizable,

•
([

C −Q
]
,

[
A P
0 S

])
is detectable, and

• S is antistable.

The error feedback output regulation problem is to design a dynamic con-
troller {

ż = Fz + Ge
u = Hz,

satisfying the following requirements:

1. The closed-loop system with w ≡ 0 is asymptotically stable.

2. e(t) → 0 as t goes to infinity for any initial state.

Solvability conditions

Due to Theorem 7.2 (page 58), this regulation problem is solvable if and
only if there exist matrices Π and Γ satisfying

ΠS = AΠ + P + BΓ
0 = CΠ − Q.

Equivalently, due to Proposition 7.4 (page 59), the regulation problem is
solvable if and only if the Rosenbrock matrix[

sI − A B
−C 0

]

is row full rank at each eigenvalue of S. (We do not need P and Q to decide
the solvability of the regulation problem.)

Control u

From the sufficiency proof of Theorem 7.2 (page 58),⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ż =

([
A P
0 S

]
+ L

[
C −Q

]
+

[
B
0

] [
K −KΠ + Γ

])
︸ ︷︷ ︸

=:F

z + (−L)︸ ︷︷ ︸
=:G

e

u =
[

K −KΠ + Γ
]

︸ ︷︷ ︸
=:H

z,
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where K and L are matrices which make

A + BK and

[
A P
0 S

]
+ L

[
C −Q

]
stable respectively (note that such K and L exist due to the stabilizability
and detectability assumptions), and Π and Γ are the solutions of the above
equations. (To find K and L, the Matlab command place.m will be useful.)

Example

Consider a system ⎧⎪⎨
⎪⎩

ẋ1 = −x1 + x3 + 2w1

ẋ2 = x3

ẋ3 = x1 + 3x2 + 2x3 + u,

influenced by an exosystem {
ẇ1 = w2

ẇ2 = −w1.

Our goal is to find a control u that solves the error feedback output regula-
tion problem, with the error signal x1 − w1.

This system can be expressed in a combined form:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ =

⎡
⎢⎣ −1 0 1

0 0 1
1 3 2

⎤
⎥⎦

︸ ︷︷ ︸
A

x +

⎡
⎢⎣ 0

0
1

⎤
⎥⎦

︸ ︷︷ ︸
B

u +

⎡
⎢⎣ 2 0

0 0
0 0

⎤
⎥⎦

︸ ︷︷ ︸
P

w

ẇ =

[
0 1
−1 0

]
︸ ︷︷ ︸

S

w

e =
[

1 0 0
]

︸ ︷︷ ︸
C

x −
[

1 0
]

︸ ︷︷ ︸
Q

w.

We can verify that (A,B) is controllable and

([
C −Q

]
,

[
A P
0 S

])
is

observable by using Matlab commands ctrb.m and obsv.m.
We solve the linear matrix equations:

ΠS = AΠ + P + BΓ
0 = CΠ − Q.
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First, we obtain Π from the second equation.

[
1 0 0

] ⎡⎢⎣ π1 π2

π3 π4

π5 π6

⎤
⎥⎦ =

[
1 0

]
=⇒ Π =

⎡
⎢⎣ 1 0

π3 π4

π5 π6

⎤
⎥⎦

Next, we solve the first equation.⎡
⎣ 1 0

π3 π4

π5 π6

⎤
⎦

︸ ︷︷ ︸
Π

[
0 1
−1 0

]
︸ ︷︷ ︸

S

=

⎡
⎣ −1 0 1

0 0 1
1 3 2

⎤
⎦

︸ ︷︷ ︸
A

⎡
⎣ 1 0

π3 π4

π5 π6

⎤
⎦

︸ ︷︷ ︸
Π

+

⎡
⎣ 2 0

0 0
0 0

⎤
⎦

︸ ︷︷ ︸
P

+

⎡
⎣ 0

0
1

⎤
⎦

︸ ︷︷ ︸
B

[
γ1 γ2

]︸ ︷︷ ︸
Γ

⎡
⎣ 0 1

−π4 π3

−π6 π5

⎤
⎦ =

⎡
⎣ −1 + π5 π6

π5 π6

1 + 3π3 + 2π5 3π4 + 2π6

⎤
⎦+

⎡
⎣ 2 0

0 0
γ1 γ2

⎤
⎦

[
π3 π4

π5 π6

]
=

[
1 1
−1 1

]
[

γ1 γ2

]
=

[ −3 −6
]

Using matrices K and L obtained by using place.m, we can get a con-
troller {

ż = Fz + Ge
u = Hz.

The closed-loop system becomes⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎣ ẋ

ż
ẇ

⎤
⎥⎦ =

⎡
⎢⎣ A BH P

GC F −GQ
0 0 S

⎤
⎥⎦
⎡
⎢⎣ x

z
w

⎤
⎥⎦

e =
[

C 0 −Q
] ⎡⎢⎣ x

z
w

⎤
⎥⎦

For various initial states of
[

x w z
]T

, the error signals e are shown in
Figure 2. We can see in the figure that the error signals converge to zero
irrespective of initial states.
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Figure 2: Error signals e for various initial states

In the case of a normal form (Important!)

If (A,B,C) are already in a normal form, the equations{
ΠS = AΠ + P + BΓ
0 = CΠ − Q

can be solved efficiently. To illustrate this, we consider a scalar case (anal-
ogous discussion can be done in MIMO cases) and

A :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

N P̂⎡
⎢⎢⎢⎢⎣
⎡
⎢⎣

0
...
0

⎤
⎥⎦

R̂

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

⎡
⎢⎢⎢⎢⎣

1
. . .

1

⎤
⎥⎥⎥⎥⎦

Ŝ

⎤
⎥⎥⎥⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

B =

⎡
⎢⎢⎢⎢⎣

0
...
0
L

⎤
⎥⎥⎥⎥⎦ , C =

[
0 1 0 · · · 0

]
.
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We divide the matrices Π and P as

Π =:

⎡
⎢⎢⎢⎢⎣

πz

π1
...

πr

⎤
⎥⎥⎥⎥⎦ , P =:

⎡
⎢⎢⎢⎢⎣

pz

p1
...
pr

⎤
⎥⎥⎥⎥⎦ .

Then, from the equation 0 = CΠ − Q, we obtain

π1 = Q.

From the equation ΠS = AΠ + P + BΓ, we obtain

π1S = π2 + p1 ⇒ π2 = π1S − p1

π2S = π3 + p2 ⇒ π3 = π2S − p2
...

πr−1S = πr + pr−1 ⇒ πr = πr−1S − pr−1

πzS = Nπz + P̂

⎡
⎢⎣

π1
...

πr

⎤
⎥⎦+ pz ⇒ πz(by solving the Sylvester equation)

So, we have obtained Π, without using Γ.
Finally, to obtain Γ, from the last row of ΠS = AΠ + P + BΓ,

πrS =
[

R̂ Ŝ
]
Π + pr + LΓ,

from which we can obtain

Γ = L−1
(
πrS −

[
R̂ Ŝ

]
Π − pr

)
.
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