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Chapter 1

Introduction

Optimal control is an important topic for several reasons. For example,

e Optimal control is one of the most useful systematic methods for controller
design. It has several advantages

— Most control problems are extremely hard to solve using ad-hoc tech-
niques and engineering intuition. Optimal control gives a systematic
approach to the solution of control problems.

— There are normally many possible solutions to a control problem. Some
are good, others are poor. Optimal control reduces this redundancy
by selecting a controller that is best according to some cost criterium.

— Nature behaves optimally and it is natural to pose many engineering
tasks as optimal control problems.

e Applications for optimal control abound in engineering, science, and eco-
nomics. We will in the course consider examples from
— Economics and logistics
— Aeronautical systems
— Autonomous systems and robotics

— Biomathematics
e Optimal control is an important branch of mathematics

— The field of optimal control has its roots in the calculus of variations
developed by such giants as Bernoulli, Euler, Lagrange, Weierstrass
and others.

— Optimal control as an independent field emerged in the 1950s during
the space race. We will in the course learn the main results which were
developed by some of the most well known systems theorists.

1



2 CHAPTER 1. INTRODUCTION

* Dynamic programming (Richard Bellman)
* Pontryagin minimum principle
* Linear quadratic control (Rudolph Kalman)

— Optimal control is still a vital research field with many directions.

1.1 Examples of Optimal Control Problems

We will here introduce three examples that will be solved during the course. The
examples are taken from rather different application areas: Economics, robotics,
and data interpolation. They illustrate our claim that optimal control is a ver-
satile systematic tool for engineering design which has wide applicability. Other
examples discussed during the course are from areas such as aeronautics and
biology.

Example 1 (Optimal storage strategy). A producer of a commodity wants to
find an optimal storage strategy. Let us use the notation

x stock size

u production rate which is constrained to the interval 0 < u < M

and assume that the storage is empty at time ¢ = 0 and that all produced com-
modity will be stored. It follows that the stock grows according to the differential
equation

&(t) = u(t), =z(0)=0.
The goal is to have at least A units of commodity in storage at some prescribed
time t;. This goal should be obtained at minimum cost. If we let

r be production cost growth rate

¢ storage cost per time unit

then the total cost becomes
iy
cost —f (u(t)e™ + cz(t))dt
0

It is not optimal to have x(t;) > A. Indeed, once x(t) = A, we can only in-
crease the cost for larger times since z(t) is positive, increasing, and appears with
positive weight in the cost integral and u is also positive and appears with pos-
itive weight in the cost integral. In other words, we can replace the inequality
z(ts) = A by the equality z(t;) = A. This implies that our optimal control
problem is

R i ” . i(t) =u(t), 0<ut)<M
muumlzef0 (u(t)e™ + cz(t))dt subj. to {m([)) <, i
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Figure 1.1: A mobile robot with constant speed v and a heading #. The problem
is to find a control law for the heading # that corresponds to the shortest path to
point b. The turning radius is bounded below by R, as is illustrated in the right
hand side of the figure.

Example 2 (Dubins’ car). We consider the problem of steering a mobile robot
from a point a to a point b as illustrated in the left hand side of Figure 1.1.

The kinematics of the robot is described by the differential equations

& = v cos(f)
7 = vsin(f) (135
=w

Here (z,y) are the coordinates of the reference point of the car, 8 is the direction
(heading) of the car (i.e., the angle between the robots main axis and the positive
z-axis), and v is the constant speed. The turning radius has the lower bound R,
which means that the angular velocity is bounded as

lw] < v/R.

To understand why there must be a bound on the turning radius we notice that
even if we can turn the steering wheel (i.e., change ¢) instantaneously, this does
not mean that # changes instantaneously since the back wheels cannot slip on the
surface.

Our aim is to find the shortest possible path from the initial point to a point
b. In mathematical language this means that we wish to minimize

"
f (@2 + 9%)Y2%dt = T
0
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Figure 1.2: The problem is to find a smooth curve that starts at (2o, o) and then
passes through the the points (2, yy,) before it ends at (zy,yn).

subject to the kinematic equations (1.1) and the initial and terminal constraints

z(0) i z(T) by
y(0)| = |ay| . y(T)| = |by
6(0) ag 0(T) b

Note that the assumption of constant speed turns our shortest path problem into
a time optimal control problem.

Example 3 (Data interpolation). We are given a set of points in the plane and
the problem is to find a smooth curve that interpolates these points. Let us
assume that the horizontal coordinates are ordered as 25 < 21 < 22 < ... < 2§
and that the corresponding vertical coordinates must interpolate given points yj,
k=0,...,N. This is illustrated in Figure 1.2.

One way to obtain resonable smoothness properties is to aim at making the
curvature small. The square of the curvature is given by

2 _ y'(2)? 1(,\2
T ey =

It appears reasonable to try to minimize the second derivate, which motivates
us to formulate the following optimization problem: Find a twice differentiable
function y(z) such that y(2x) =y, £ =0,...,N, for k=1,... N, and such that
L7y (2)?dz is minimized.

The first step in addressing this problem is to formulate it in state space form.
Let the “time axis” correspond to z and in particular let ¢; := z;. Furthermore,



1.2. REDUCTION OF REDUNDANCY 5

T T Lo
Zo 0 z

Figure 1.3: Control problem: Move the rocket car to rest at z = 0.

define the state vector to be z = (z1,22) = (¥(2),¥/(2)), and finally define the
control as u = y"(z). Then the state space representation becomes

0= o )+ [wer (2] - [2)
y=[1 0] [2]

where g is a parameter we need to choose. If we define

A=[g (1]] B=m, c=[1 0],

then our optimal control problem can be formulated as

& = Az + Bu,

in
minimi u(t)?dt subj to
zef (®) = {C’:c(tk)zyk,kzl,...,N

to

This problem and many generalizations have been solved in [19, 26, 7]. The
resulting optimal curve will in our example be a polynomial spline. The problem
differs from most problems discussed in the lecture notes since there are state
constraints between the two end times. It is still possible to solve it using the
methods discussed in the notes see e.g. [9].

1.2 Reduction of Redundancy

We will here by an example show that in general there may be many solutions to
a control problem. Optimal control theory can then single out solutions that are
best according to some cost criterium.

Consider control of the rocket car pictured in Figure 1.3. The control problem
is to move the rocket car from rest (i.e., the speed is zero) at a point z, to rest at
the origin. It is assumed that the car moves along a frictionless track. Newtons
law gives the dynamical equation mz = F, where m is the mass of the car. If we
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introduce the coordinates 2, = z and x; = # and the control function u = F/m,
then we get the equivalent state space realization

(=B o BB EG-[3]
i

then our control problem can be stated as follows: Find a control function u :
[0,2] — R such that the solution to & = Az + Bu, z(0) = =z, satisfies z(t;) = 0.

It turns out that there are (infinitely) many solutions to this problem. In fact,
if we define (see [14] or Chapter 4 to learn about these topics)

If we define

L. the transition matrix ®(t, s) as the solution of the differential equation

00(t,s) s
220.5) _ awats), 0(s,5) 1

which for the case of a constant A matrix becomes ®(t, s) = eA(t=2)

2. the controllability Gramian
ty
W (ts,0) =/ ®(ts,s)BBT®(t;,5) ds (1.2)
0

then it follows that
u(t) = —BT®(t;,t)TW (ts,0) " ®(t s, 0)zo + uo(t) (1.3)

is a solution to our control problem for every ug that satisfies

tf
/ ®(ts, s)Bug(s)ds = 0.
0

Optimal control theory can be used to reduce the number of choices by introduc-
ing a cost criterium that should be minimized. In this way we pick a solution
that is in some sense better than the others. The following optimal control for-
mulations are treated in, for example, [22].

1. Minimization of a quadratic cost j;'" u(t)2dt gives an optimal control prob-
lem on the form

¢ = Ax + Bu,

iE(U) = X, .’E(i‘f) =0 (14)

tf
minimize/ u(t)?dt subj to {
0
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It is shown in [14] that the optimal solution is obtained by choosing up = 0
in (1.3). The corresponding optimal cost is

J(ts) = ag B(ts, 0)" W (ts,0) " ®(t, 0)zo.

We will in this course learn how to derive this result. It should be noted
that different choices of transition time t; gives different solutions to the
optimal control problem in (1.4).

2. The quadratic cost function has the effect that the control function, i.e., the
force function F', becomes small in the sense that its energy is minimized.
It is often the case that there exists an upper bound on the admissible
acceleration force obtained from the jet-engine, ie., |F| < K and hence
|u(t)] £ K/m. Assume that the variables are scaled such that K/m = 1.
The book [22] solves the following two optimization problems

(a) Minimization of the transition time (Example 4.2)

= Az + Bu, |yl <1

minimizet; subj to
! J {:E(O) = xg, z(ty) =0, ty 20

This is a so called time optimal control problem.
(b) Minimization of the “fuel” for a fixed transition time (Example 5.11)

= Az+ Bu, |y £1

tf
minimize u(t)|dt subj to
/(; [u®) {m(O) = zp, z(t;) =0

This is the so called fuel optimal control problem.

We treat problem (a) in the exercises.

1.3 Formal Problem Statement

The optimal control problems considered in this course are defined in terms of
the system dynamics, the boundary conditions, the control constraints, and the
cost criterium.

System dynamics: The system dynamics will be defined in terms of state space
equations &y, = fu(t, T, ..., ZTn, U1, - -, Un), for k= 1,...,n, or equivalently
in vector form

Ty fi (51
&= f(t,z,u), where z=|:1|, f=]|:

Tl U= :
T fn U
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Sy

Figure 1.4: Optimal control from a line in S; = {z : gx(z) =0, k = 1,2} in three
dimensional space to a surface Sy = {z : gs(z) = 0}.

The function f is called the vector field. It will generally be assumed that
f is continuous with continuous partial derivatives with respect to ¢ and
x. Sometimes we also assume continuous differentiability with respect to u
(for example in Chapter 4).

Boundary conditions: The initial and final (terminal) times are denoted by
t; and ty, respectively, and the state vector is constrained to satisfy the
boundary conditions z(t;) € S; and z(ty) € Sy. The sets S; and Sy are in
general smooth manifolds of the form

S={zecR":g(z)=0,k=1,...,p}, (p<n)

91(z)
={z € R":G(z) =0}, where G(z)=

gp (:E),

where the gradients Vg, are assumed to be linearly independent!; this is
equivalent to require that the functional matrix

dg1(z) 3g1(z)
8z e dzp

Gi(z) = :
9gp(z) Ogp(z)
81 S T

has rank p for all z € S.

An example is illustrated in Figure 1.4 where the initial set is a line in R®
and the end point set is a surface. We will in the first few chapters focus
on the important special case when we have

o fixed initial state, i.e., S; = {z;}.

Tt is enough that they are linearly independent in a neighborhood of the optimal point.
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o free terminal state, i.e., Sy = R".

Control variable: The control variable will be restricted to be a piecewise
continuous function that takes values in a set U C R™. The most common
choices in the course willbe U = R™ and U = {u € R™ : —1 < 4, <
1, k=1,...,m}.

Cost function: The cost function will in general consist of two terms

Halt)+ [ fult alt) u(t)as

where

e the terminal cost ¢(z(ts)) penalizes deviation from some desired final
state or manifold,

e the integral part of the cost is a cost associated with the state and
control trajectories,

e ¢ and f, are generally assumed to be C, i.e., continuously differen-
tiable with respect to the arguments.

The complete optimal control problem can now be formulated as

t: = f(t,z,u),u e U,
minimize ¢(z(ts)) +[ fo(t,z(t),u(t))dt subjto < z(t;) € S;, z(t;) € S,
" u(+) is piecewise cont
(1.5)

The optimal control problem is thus to find an admissible control u(t) € U which
transfers the state from some point in S; to some point in Sy in such a way that
the value of the cost functional becomes as small as possible. The initial time is
always assumed fixed while the final time sometimes is a variable. In that case we
add the constraint that the transition time is positive, t; —%; > 0, to the optimal
control problem (1.5).

Remark 1. Maximization problems can be treated in exactly the same way as
minimization problems since

tg
maximize ¢(z(ty)) + /t. fo(t, z(t), u(t))dt

tf
fo(t,m(t),u(t))dt}

t;

= —minimize {—q‘b(m(tf)) -
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Admissible controls and optimal controls

A control signal is called admissible if it is piecewise continuous and such that all
the constraints of (1.5) hold, i.e., u(t) € U for all t € [t;,ts] and such that an initial
point x; € S; is transfered to a final point 2y € Sy by the dynamical equation
z = f(t,z,u). The corresponding state function is also called admissible. We
often use the notation u(-), and z(-) to denote a control function u(t), t € [t;, )
and the corresponding state function z(-). Sometimes we call u(-) and z(-) the
control and state trajectories.

For every admissible control function u(-) and the corresponding state function
z(+), we define the cost function

I u()) = Bae) + [ Y ot a(t), u(t))d.
Then an admissible pair (z*(-),u*(-)) is optimal if

J(@*(-), () < J(2(),u(*)

for all other admissible pairs (z(-), u(:)).

‘Well-posedness of the optimal control problem

It is not always the case that there exists an optimal control and state function
(z*(+), u*(-)). Several problems can appear

e There may not exist a control that transfers a point in S; to the set Sy.
In this case the value of the optimal control problem (1.5) is defined to be
infinity.

It is in general complicated to establish if the system is controllable in the
sense that there exists a control that transfers a point in S; to the set Sy.
The situation is, however, simplified when the dynamics is linear

& = A(t)z + B(t)u.

In particular, if the control constraint is U = R™, then there exist (many)
admissible controls if the controllability Gramian defined in (1.2) is positive
definite.

e Another potential difficulty is to establish that the solution of the differ-
ential equation & = f(t,z,u) is well defined on the interval [t;, 1] for any
piecewise continuous function »(t) € U. If this is not the case then the
constraint set in (1.5) is complicated to deal with. We discuss existence
and uniqueness of solutions to ordinary differential equations in Chapter 3.
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e It may happen that there does not exist an optimal control for (1.5). As an
example, consider the optimization problem (1.4) but with the difference
that the transition time t; is a free variable to be chosen optimally. We
have already seen that for fixed ¢; the optimal solution becomes

1223
3
ty

J(ts) = g @(ts,0)TW (ts,0) 7 D(ts, 0)zg =

where the last equality is obtained after some simple calculations (using the
particular A and B matrices in that example). It follows that J(t;) — 0 as
ty — oco. The corresponding optimal control (for given t;) is

u(t) = —BTD(t;, )T W (¢, 0)" (¢, 0)zo = 1—32(:5 —;/2).
f

This shows that, as £y — 0o, the cost function decreases to the lower bound
J(00) = 0. This means that if we add t; > 0 as a free variable to be chosen
optimally in (1.4) then there exists no optimal solution. The optimal value
can only be achieved in the limit as t; — oo (and then the control tends to
zero). The situation is completely analogous to the optimization problem

minimizexz subj. to x>0

where the optimal value 0 cannot be obtained because z = 0 does not
belong to the constraint set = > 0.

e The above situation when the optimal control only exist in the limit gives
an indication that the optimal control problem is not well posed. A slight
change in the formulation of the optimization problem will often give a
solution that is close to optimal. For example, the previous problem will
have a solution if we introduce an upper bound for ¢; (t; < T) in the
constraint set.

We will for the most part ignore these potential difficulties. This is not an essential
loss since the main results of optimal control can be established and used without
detailed knowledge and understanding of the topics we just pointed out.

Main approaches for optimal control

We will in the course focus on the following approaches for optimal control

Dynamic programming: Sufficient conditions for optimality are obtained by
studying the optimal cost function (it is also a necessary condition under
some additional assumptions). Some characteristics of this approach are:
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+ It gives a sufficient condition for optimality. Hence, with this approach
we immediately resolve the question of existence of an optimal control.

+ We obtain the optimal control in feedback form, u(t) = u(t,z), for
some function g of time and the current state of the system.

— The optimal control is obtained by solving a partial differential equa-
tion.

— It requires the optimal cost function to be sufficiently smooth which
is not always the case.

Pontryagin Minimum Principle: Necessary conditions for optimality are
obtained by investigating local properties around the optimal control and
state trajectories. The characteristics of the approach are:

+ It can be used in cases when dynamic programming fails due to lack
of smoothness of the optimal cost function

+ It gives optimality conditions that are in general substantially easier
to verify than solving the partial differential equation which arises in
the dynamic programming approach.

— It only gives a necessary condition for optimality. This means that it
can only be used to obtain candidates for optimality. Then these can-
didates must be investigated further to establish the optimal solution.
This situation is analogous to scalar optimization, where the derivative
condition f’(z) = 0 gives a necessary but not sufficient condition for
optimality.

Computational Algorithms: It is in most cases impossible to find analytical
solutions to optimal control problems. Instead we have to use numerical
methods to obtain a solution. Several algorithms will be presented.

1.4 Notation

Let J: R x R™ — R be twice continuously differentiable with respect to z (C*
w.r.t ). Then

aJ(t,z) 8%J 8J
oJ 8z 82J(t. z 8r10T1 " Owndm
R =B mm=| ¢ | ultey=TEE T ;
Oz aJ(t,z) Oz 827 827

BTy 818z, T Ozpdzp



1.4. NOTATION 13

For a vector function f: R x R" — R", we use the notation?

ahf 8h

£ B ' Boa

hlto) Of(z) [ T B

f(tzm) = i ) fw(t: .’E) = T = : 4
falt,z) LR 3
The gradient of a function g : R® — R is defined to be a column vector
dg(z)
oz
Vg(:r,) = gm(w) = :

6g(m!

and the Hessian is the second order derivative matrix

d%g 8%
8r18z1 """ Bzndn
Hy(z) = gou(z) = : :
9% 0%
818z, '  Oznlrn

For a vector function G : R™ — R™ we have
Va1 (z)T g1, Sa1

dry " Oz
G,,,(IB) = = : ;
Voley| | ..

If H(z,u) is C* then a second order Taylor expansion around (z°, u) is given as
H(z,u) = H(z,u®) + H,(2°,u®)6z + H,(z°, u®)0u+

1 [62]" [Hay(a®, u0) Hey(2°,u%)] [62
5[61&] {Hw(mo,uo) Hep(2°,4%) | [0u +ELT

where 6z = z — z°, and du = u — u°.
The Euclidean norm on R" is defined as

n
lzll = 4| D=k
k=1

1.4.1 Reference Literature

There are many books on optimal control. Some good references for the material
in this course are the following ((A) advanced book that requires a higher level
of mathematical sophistication than our course, (I) intermediate level, (E) ele-
mentary book)

Dynamic Programming: The classical book on this subject is the work of
Bellman in

2 fx(t,z) is sometimes in the literature denoted J #(t,z) (the Jacobi derivative).
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(I) R. E. Bellman. Dynamic Programming. Princeton University Press, New
Jersey, 1957.
Some recent good references are

(E) D. P. Bertsekas. Dynamic Programming and Optimal Control (Vol 1).
Athena Scientific, 1995.

and chapter 5 in

(E) T. Basar and Geert Jan Olsder. Dynamic Noncooperative Game Theory.
SIAM, second edition, 1999.

Pontryagin Minimum Principle: The original book by Pontryagin and his
colleagues is still one of the best treatments of the subject

(A) L.S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mishchenko.
The Mathematical Theory of Optimal Processes. Interscience Publishers,
1962.

Other good references are

(A) E. B. Lee and L. Marcus. Foundations of Optimal Control. Wiley, New
York, 1967.

(I) M. Athans and P. Falb. Optimal Control. McGraw-Hill, New York, 1966.

(I) J. Macki and A. Strauss. Introduction to Optimal Control Theory. Springer-
Verlag, 1982.

(I) G. Leitmann. The Calculus of Variations and Optimal Control. Plemum
Press, New York, 1981.

(E) D. E. Kitk Optimal Control Theory: An Introduction Dover Publications,
Mineola, New York, 1998.

(E) E. R. Pinch. Optimal Control and the Calculus of Variations. Oxford
Science Publications, 1993.

A book that can be obtained free of charge on the internet is

P. Varaiya. Lecture Notes on Optimization. 1971.
http://paleale.eccs.berkeley.edu/~varaiya/

Numerical Methods: Numerical methods for optimal control are discussed
in
(A) D. G. Luenberger. Optimization by Vector Space Methods. Wiley, New
York, 1969.
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(A) B.D. Craven. Control and Optimization. Chapman and Hall Mathematics,
1995

(E) A. E. Bryson. Dynamic Optimization. Addison-Wesley, Menlo Park,
California, 1999.

(E) A. E. Bryson and Y. C. Ho. Applied Optimal Control. Blaisdell Waltham,
1969.
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Chapter 2

Discrete Optimization

We will in the course mainly consider continuous-time optimal control problems.
However, to get familiar with some of the key ideas we will in this chapter dis-
cuss optimal control problems in discrete time. In the first section on discrete
dynamic programming we will even allow the state space to be discrete. Discrete
dynamic programming has its application in a wide range of areas ranging from
combinatorial optimization to coding theory and hybrid optimal control. It also
helps us building the right intuitive understanding of the important principle of
optimality and the associated dynamic programming equation.

We also introduce a discrete time version of the Pontryagin maximum principle
(PMP). It shows that the first order optimality conditions has a certain struc-
ture for the class of dynamic optimization problems considered in this chapter.
The continuous time PMP is more complicated but still derived in a “analogous
fashion”. We end the chapter with a discussion on optimal control problems on
infinite time horizon.

2.1 Discrete Dynamic Programming

We begin with an example

Example 4 (Shortest path problem). Consider the directed graph in Figure 2.1.
The initial node (or initial state) is connected to the terminal node (terminal
state) through several possible paths. To each path is associated a cost obtained
by adding the costs of each arc in the path. For example, the uppermost path
0—+1—+1—1—+1-—>0hasthecost 14+5+4+1+2=13. We are interested
in finding the path with lowest cost. One way to solve this problem is simply
to compute the cost of each path and then compare them. If N denotes the
number of stages (in our case N = 5) then it is possible to verify that there are’

!The big ordo notation means that if f(IV) = O(AY) then there exists a constant such that
F(N) < eV for large N.

17



18 CHAPTER 2. DISCRETE OPTIMIZATION

O((1++v2)N) paths. Hence, since we need to add N numbers to compute the cost
of a single path, we need to do a total of O((1 + v/2)"Y N) additions of numbers
and then compare O((1 + v/2)") numbers in order to find the shortest path.

Initial 1
node

0 2

3

Stage 0 Stage 1 Stage 2 Stage 3 Stage 4 Stage 5

Figure 2.1: In a shortest path problem we want to compute the shortest (lowest
cost) path from the initial node at stage 0 to the terminal node at stage 5. The
cost of each arc is represented by a positive number above the arc. The numbers
{1,0,—1} representing the three possible nodes at stage 1,2,3 and 4 represents
the {upper, middle, lower} positions.

Dymamic programming will provide us with a systematic and less expensive
way of finding the shortest path. To develop this idea we first introduce some
notation. We let k € {0,1,...,5} denote the stage and for each stage the state
vector zj, = z(k) € {1,0,—1} tells us whether we are in the upper, middle, or
lower node respectively. In this way we can represent the nodes of the graph
with their “coordinates” (k,z;). We let J(k,z) be the shortest path (minimum
cost path) from node (k,z) to the terminal node. The shortest path from stage
0 corresponds to J(0,0), which satisfies the following obvious relation

J(0,0) = min(1 + J(1,1),2 + J(1,0),3 + J(1, -1)).

In words this means that the shortest path is the shortest of the following three
paths

1. Go up to node (1,1) and then continue along the shortest path to the
terminal node. This path has the cost 1+ J(1,1).

2. Go forward to node (1,0) and then continue along the shortest path to the
terminal node. This path has the cost 2+ J(1,0).

3. Go down to node (1, —1) and then continue along the shortest path to the
terminal node. This path has the cost 3 + J(1,—1).
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We can continue like this. For example, we have
J(1,1) = min(5 + J(2,1),3 + J(2,0)).

The basic principle behind the above formulas is the so called principle of opti-
mality, which for our example says that

The shortest path has the property that for any initial part of the path from
the initial node to some node (k,z) € {1,...,5} x {1,0,—1}, the remaining path
must be the shorthest from the node (k,x) to the terminal node.

We also notice that the cost corresponding to the terminal part of the shortest
path is known in advance. Indeed, we have J(5,0) = 0. This means that we can
optimize backwards from stage 5 to stage 0 and this way recursively compute the
shortest path-to-go function J(k,x). Since, there is only one way of going from
the nodes at stage 4 to the terminal node, we get

J(4,1)=2, J(4,00=3, J(4,-1)=4
In the next step, we get
J(3,1) = min(1+ J(4,1),2+ J(4,0)) = min(3,5) = 3
J(3,0) = min(3 + J(4,1),4+ J(4,0),2 + J(4,—-1)) = min(5,7,6) = 5 (2.1)
J(3,-1) = min(1 + J(4,0),5+ J(4,—1)) = min(4,9) =4

If we continue like this we obtain the optimal solution in Figure 2.2. The cost of
the shortest path is J(0,0) = 8.

We can now determine the complexity of the dynamic programming approach.
No addition and comparison is done while computing J(5,z) and J(4,z). To
compute J(3,z) for z = 1,0, —1 using (2.1) we have to do a total of 7 additions
and 4 comparisons. Hence, for arbitrary number of stages we need to add 3 +
7(N —2) numbers and compare 2 + 4(N — 2) numbers. For large N this is much
less expensive than computing the cost of all possible paths and then comparing
them.

The shortest path problem in the previous example is a special case of a
multistage decision problem. The general form is an optimal control problem

Trr1 = f(k, zx, ug)
minimize ¢(zy) + Eg;lfo(k,mk,uk) subj. to zg given, o € Xi  (2.2)
u € Uk, zx)

This is similar to the continuous-time optimal control problem introduced in the
previous chapter except that the system dynamics evolve in discrete time and
the integral cost has been replaced by a sumation over the #ime axis. The reason
we put time in italics is that the variable £ may not have anything to do with
time and should generally be viewed just as an enumeration of the stages of the
optimization problem (2.2). Some comments about (2.2) are in order
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Stage 0 Stage 1 Stage 2 Stage 3 Stage 4 Stage 5

Figure 2.2: The optimal solution to the shortest path problem. The shortest
path corresponds to the thick arcs in the graph. Above each node we have the
shortest path-to-go J(k,x) within parenthesis and the thin arrows corresponds to
the optimal decision (direction) at each node.

System dynamics: The variable k € {0,1,..., N} represents an enumeration
of the stages of the optimization problem (2.2). We generally call it the time
variable and in many applications this is also the correct interpretation. The
state vector x belongs to some state space that generally depends on &, i.e.,
we have zj, := x(k) € X, where X}, denotes the state space at stage k. It
is often the case that X; = R" for all k = 0,1,..., N but it can also be
a discrete set as in the shortest path problem. The evolution of the state
vector is defined by the state equation

Tpy1 = f(k,ﬂlk, Uk)

where the vector field f generally depends on the time k, the state vector
Ty, and the control variable uy,.

Control variable: The variable u;, € U(k, ) is the control (or decision)
variable. The control constraint set U(k, x;), which constrains the range of
the control variable, may depend on the present state of the system, i.e.,

(ka mk)‘

Cost function: The cost function is additive and has one term corresponding
to each stage. The terminal cost ¢(zy) penalizes deviation from a desired
terminal state and the running cost adds a term fo(k, 2k, ur) to the total
cost at each stage.

The optimization problem (2.2) can be generalized by letting zy € Sy, zy € Sw,
where Sy C Xy and Sy C X are given subsets of the state space. We can also
let the number of stages N be variable.
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Example 5 (Shortest path, continued). For the shortest path problem we have
N =5 and

o 5 =0, X, ={1,0,-1} at k=1,...,N — 1, and Xy = {0}.

e The control variable can in general take three values 1,0, —1 where u; =1
means go up, U = 0 means go forward, and u; = —1 means go down. The
control constraint set is

{0,-1}, =z=1
U(k,z) = ¢ {1,0,-1}, =z=0
{1, 0}, z=-1

for k = 0,...,N —2, and finally U(N — 1,1) = -1, U(N —1,0) = 0,
and U(N —1,-1) =1

e The state dynamics is given as
Ty = Tp + Uk,
i.e., f(k2u)=21u.

o The termmal cost ¢(z) = 0 and the stage-wise additive costs fo(k,z,u) =
, where cf; % is the cost on the arrow from node (k,%) at stage k to node
(k+1 ) at stage k + 1 in Figure 2.1. For example, c§; = 1, cf; = 5,
cig = 3 and so on.

Next we will state the main result of this section. It shows that the opti-
mal cost and the corresponding optimal control satisfies a dynamic programming
recursion, which is a direct consequence of the principle of optlmahty

If {uk}N 1 s an optimal control for (2.2), then {ut}i.! is optimal for the
subproblem obtumed by considering an optimization on the form (2.2) but with
initial condition (n, z*(n)), i.e., we restart the optimization from somewhere along
the optimal path.

Introduce the optimal cost-to-go function?

Tpt1 = f(k7$k:uk)
J*(n,z) = min ¢(zn) + Zho fo(k, Tk, ux) subj. to § z. =12, Tp € Xy
Uk € U(k, $k)

forn=0,...,N —1 and J*(N,z) = ¢(z). In particular, the optimal solution
of (2.2) is J*(0, 7).

2We assume that the minimum exists otherwise min should be replaced by inf in the definition
of J*(n,x). In particular, if no feasible solution exists then we would have J * (n,z) = co.
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Theorem 1. Suppose there exists a finite solution to the backwards dynamic
programming recursion

J(N,z) = {igm) . ;g

J('n,.’ﬂ) :uerll}(i??m){fo(n’m’u) +J(n+ 1,f(n,m,u))}, n=N-1,N-2,...,0

where the optimization over U(n,x) is restricted to those control variables for
which f(n,z,u) € Xni1. Then there exists an optimal solution to (2.2) and

(@) J*(n,z) =J(n,z) foralln=0,...,N, z € X,,.
(b) The optimal feedback control in each stage is obtained as

U, = [L(ﬂ, T) = a'rgrninueU(n,m){fO(naIau) * J(n’ +1, f(n,:.c, 'U.))}

Proof. We show by induction that J*(n,z) = J(n,z) for all n and z. By
definition, we have J*(N,z) = J(N,z) = ¢(z). Assume, now that for some
n € {l,...,N — 1} we have J*(n + 1,2) = J(n+ 1,z) for all z € X,.1. Then
(here z,, is given by the state evolution z,; = f(n, 25, uy))

N-1
S, 2n) = ukGU(k,mS?n.Q:n,...Nfl {qb(:z:N) + ; folk, z, uk)}
N-1
= 0Bl {fo(n’ I e e {«Mw) + 2 folka, >}}
= min {fo(n,zp,ua) + J*(n+ 1, f(n, T, un))}
un €U(n,zn)

= min {fl)('n'7 T, uﬂ-) =+ J(n +1, _f(ﬂ., Ln, un))}
un €U (n,m5)

where the first equality is by definition and the second follows since the cost
function is additive over the different stages (which is the principle of optimality).
In the third equality we used the definition of the optimal cost-to-go function and
that 2,11 = f(n,2,,u,). Finally, in the fourth equality we used the induction
hypothesis. This proves statement (a).

Statement (b) follows since the optimum in the proof of (a) is obtained when

using u, = argrninuEU(n,m){fO(n?m:u) + J(ﬂ +1, f(n,:c, u))} .

Example 6 (Shortest path, continued). We now use Theorem 1 and the notation
established in Example 5 to solve the shortest path problem in Figure 2.1. The
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first step of the recursion gives J(5,z) = ¢(z) = 0 (note that X5 = {0}. At stage
4 we get

— i - i 4
J(4,z) uégézz){fo(4,m,u)+u7(5,fﬂ)} uggégw){cm,m}

4 _ —
o=2 z=1

o g — -

= 30,0_3, =10
4 e
ctio=4%4 z=-1

Next, for stage 3 we get

— mi — i 3
J(3,7) = S {fo(3,z,u) + J(4,z + u)} uerggl,m){cm,m +J(4,z+u)}

min(c} ; + J(4,1),¢}o + J(4,0)) = min(1 + 2,2+ 3) = 3, =1
= ¢ min(c§, + J(4,1),630 + J(4,0),¢5 _, + J(4,~1)) = min(5,7,6) =5, z=0
min(c, o+ J(4,0),c3, _; + J(4,—1)) = min(4,9) = 4, g=-1

If we continue like this we get the optimal solution in Figure 2.2.

In the next example we consider the important linear quadratic control prob-
lem in discrete time.

Example 7. Consider the Linear Quadratic (LQ) control problem

N-1
inimi : Ziy1 = Axy + By,
minimize £y Qo N + Z (m}:ka fi u{Ruk) subj. to k+1. k+ Dug
k=0 Tp glven

(2.3)

where Qg and @) are symmetric positive semidefinite matrices and R is a symmet-
ric and positive definite matrix. To find the optimal control we use the backwards
recursion in Theorem 1, which for (2.3) becomes

J(N,z) = 27 Qoz
J(n,z) = min, {z"Qz + vTRu+ J(n+1, Az + Bu)}

The equations are quadratic with respect to z. Inspired by this we try J(n,z) =
zTP,z. From the first equation we see that Py = . The second equation
becomes

tf Pz = uréaritl,}l {z"Qz + v Ru+ (Az + Bu)TP,1(Az + Bu)} (2.4)
For the minimization in (2.4) we have
uy, = pu(n,z) = arg ulgritl}n {2"Qz + u"Ru+ (Az + Bu)" Poy1(Az + Bu)}
= —(R+ BTP,.,B) 'BTP,,, Az,
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which is obtained by differentiating with respect to u and then setting the deriva-
tive to zero. If we plug this into (2.4) we get

' Por =z (Q+ AP A— ATP, . B(R + BYP1B)'BT P A) z

which must hold for all z € R". This means that the matrices P, must satisfy
the discrete-time Riccati equation

Py =@y

2.5
P, =Q+ A" (Poy1 — PapnB(R+ B'P,1B)'BTP,1)A (25)

forn=N-1,N—2,...,0. Note that P, > 0 for all n, which implies that the
inverse in (2.5) is well defined. To see that P, > 0 we notice that Py > 0 because
Qo = 0. Furthermore, the minimum in (2.4) must be positive forn = N — 1
because Py, and R are all positive semidefinite. Induction proves the result.

To summarize, we have that the optimal cost-to-go and the optimal feedback
control law are

J(n,z) = 2T P,z
’U,; = p’(nr m) = _(R + BTPn+1B)_1BTPn+1A$

where F, is the solution to the Riccati equation in (2.5).

2.2 Infinite Time Horizon Optimization

Let us consider multistage decision problems over an infinite time horizon. We
consider the following general form of such problems

Tpy1 = f(mk: 'lbk)
min 32, fo(zk, ux) subj. to x given (2.6)
ug, € Ufzy,)

In order for the cost to be finite we need that fo(zs,ux) — 0 as k — co. An
interpretation is that (2.6) models problems where convergence to some particular
set of values is desired. In our discussion we will set up the problem such that
the state and the control must converge to zero.

The following assumptions are made

Assumption 1. We assume (w.l.o.g) that 0 € X, U(0) = {0}, £(0,0) = 0 and
fO(O: 0) =0

The assumption implies that zero is an equilibrium point of the discrete dy-
namics

LTrt1 = f(:rk:uk)
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This means that if (zg, uo) = (0,0) then the zero control ux = 0, Vk implies that
T = 0, k.

We will always assume that f(zy,u;) € X for any zx € X and w € U(zw),
i.e. that the state vector always remains in the presribed state space. A common
situation is that X = R™ and then this is obviously satisfied.

In order to obtain the simplest possible result we will assume that the cost
function and therefore the value function (the optimal cost of (2.6)) are positive
definite and quadratically bounded.

Definition 1. A function V : X — R is called strictly positive definite® if V(0) =
0 and there exists ¢; > 0 such that V(z) > c|z|? for all z € X. It is called
strictly positive definite and quadratically bounded if in addition there exists ¢; > 0
such that V(z) < ¢p||z|? for all z € X.

Example 8. A quadratic form V (z) = 7 Pz, where P = PT | is strictly positive
definite if P > 0, i.e., if all eigenvalues of P are positive. It is clearly quadratically
bounded.

Assumption 2. We assume that f, is strictly positive definite, i.e. there exists
¢ > 0 such that fo(z,u) > e(||ze|? + [luell?)-

Let us now define the optimal function (value function) corresponding to (2.6)
" = mi 1
(20) = min > folor, ur)
k=0
The value function is independent of time since the dynamics and cost function

of (2.6) both are independent of time (the stage index k).

Theorem 2. Suppose Assumption 1 and Assumption 2 hold. If there ezists a
strictly positive definite and quadratically bounded function V @ X — R" that
satisfies the Bellman equation

V(@) = min (@) + V(@) (27)

then
(a) V(z) = J*(z)
(b) v = p(z) = argmin,cye {folz,u) + V( f(z,u))} is an optimal feedback

control that results in a globally convergent closed loop system, i.e. for any
zo € X the optimal solution satisfies (zy, p(zx)) — 0 as k — oo.

3This definition of strictly positive definite is stronger than normal. It is used to simplify
the understanding of this section.
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Remark 2. The assumptions are stronger than necessary but it simplifies the
proof. This allows us to prove a very strong form of convergence called exponential
stability.

Proof. We first prove that u; = p(z;) gives a globally convergent system. From
the Bellman equation we get

V(Zr41) = V(zk) — folzr, pzr))

If we use Assumption 2 and the assumptions on V we get
V(ze4a) < V (k) — el + |uler)?)
€
< (1= =)V ()
Ca

which implies V(zy) < (1 —€/c2)VV (2). Finally, since ¢||z||? < V(z) < ¢y)|z||?
we get

lenll < vea/er(L — e/ ea)V?||zo| (2.8)
which proves convergence. The control also converges because
1 1 1
@) < <folaw, nlaw) < V(en) < ellanl?

which due to (2.8) implies

|(@e)] < y/c/(ecr)(1 — €/ca) "2 ol

We have now proved that u = u(z) is “stabilizing” in the sense that the
closed loop state vector converges to zero. We will next see that it also gives the
minimal cost. Consider an arbitrary control sequence {u}$2,, which results in a
convergent solution. By the Bellman equation we have

fo(zr, ur) 2 V(@) — V(@py1)

with equality if u, = u(x;). Hence, we have
N N
dim ; fo(wk,ug) 2 lim g V(xr) = V (k1)

=V(zo) = lim V(zy) = V(o)

where we used that zy — 0 = V(2y) — 0. Since the first inequality becomes
an equality when u, = pu(zy), we get

V(zo) =) folas, p(z)) < > folww, u)
k=0

k=0
This proves the optimality. O
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2.3 A Discrete Version of PMP

Consider the following discrete time optimal control problem

N-1
= flk
minimize ¢(zy) + E folk, z,uz) subj. to $k+.1 f( » Ty Uk),
k=0 zg is given, G(zy) =0

(2.9)
9 (z)

where G(z) = : satisfies the usual regularity assumption, i.e. the gradients
9(2)

Vgi(z) are linearly independent. This is a special case of (2.2) in which X = R"
and U = R™. The dynamical programming approach to solving such problems
is characterized by the following properties

e Feedback solutions are obtained. This means that we know the optimal
control value for every position of the state vector z. This gives robustness
to the closed loop system in the following sense: If the solution is perturbed
by a disturbance then the controller still knows the optimal action.

e The solution is obtained using backwards recursion, which can be compu-
tationally demanding. Omne way to understand this is that we compute
the optimal control value for every possible system state. What we win in
robustness we loose in computational complexity.

e It is a sufficient condition for optimality.

We next use the Lagrange multiplier rule (also known as the Karush-Kuhn-
Tucker conditions (KKT), or the first order optimality conditions) to obtain nec-
essary conditions for optimality. The resulting conditions are the discrete version
of the so-called Pontryagin minimization principle that we will study later in the
course.

We recall from the optimization courses (the KKT conditions)

First order necessary condition (KKT): Suppose z* is a (locally) optimal
solution of

minimize f(z) subject to G(z) =0

where f : R = R and G : R” — RP? are continuously differentiable and the
constraint set is regular, i.e., the gradients Vgi(z) are linearly independent. Then
there exists a vector of Lagrange multipliers A € R? such that

(1) G(z*) =0
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(41) Vgl(z*,A) = 0, where I(z,\) = f(z) + A\TG(z) is the Lagrangian.
We can use it to derive the following result.

Proposition 1. Let {u}; ' be an optimal control for (2.9) and let {z}}V,
be the corresponding trajectory. Then there ezists an adjoint variable (Lagrange
multiplier) {\c}i_, such that

(?) (adjoint equation)
BH * *

,\k:%(’ﬂ,ﬂk,uk,Ak_}.l), k= 1,,N—1
(1) (“pointwise minimization”)

OH o o .

E(k,ﬂ:k,uk,Ak_}.l):O, k=0,1,...,N—l
(44) (Boundary condition)

a¢ * *
Av = 55(3?:\') + Ga(zy)"v

for some v € RP,

where the Hamiltonian is
H(k,z,u,\) = fo(k,z,u) + X f(k,2,u)
Proof. Let

s[al oo BF B o Whalh

N-1
F(z) = d(zn) + Y, folk,zx, uz)
k=0

£(0, g, up) — 21
G(z) = 1
f(N = Lzy_1,un) —zN
G(zn)
The Lagrange multiplier rule says that a necessary condition for optimality of

min F(z) subjectto G(z) =0

is that there exists a Lagrange multiplier ) such that

%(z*,j\) =0 where I(z,})=F(z)+ \G(z)
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In our problem the Lagrange multiplier vector is A= [AT vT]T. We get |

ol , .. 8 ) 8

a_mk-(z ) 8‘20(.;5, k’ k)+A;ii:+laf(k Sﬂk,uk) Ak, k: 1,...,N—' ].
ol ¢ .

a—m;;z) am( ) — A+ Ge(zy) v
ol 0 af

é?kz fo(ka Ly, k)+)\k+la (kmk.a k) kZO,...,N—l

{ &

Hence, the condition g—(z*, A) = 0 together with the definition of the Hamilto-
z

nian function H(k, Zx, g, Ax+1) Proves the proposition. O

The propostion is often used in the following way
1. Define the Hamiltonian: H(k,z,u,\) = fo(k,z,u) + X f(k, z,u)

2. Perform pointwise minimization, i.e. find a function u(k,z,)) such that

BH (k z,u,\) = 0. Hence the candidate optimal control is uj, = u(k, 2}, Ak+1)-

3. Solve the two point boundary value problem (TPBVP)

o0H
T+l = a(‘kzmk: p’(k: Tk, )\k+l)?/\k+1) = f(ka Tk, Ju’(kv L, )\k+l))} G(mN) =0

oOH 0
A = ﬁ(k, Tioy (K, Thy Arg1)s Met1), AN = 6—:($N) + Go(zn)Tv

We call this a two point boundary value problem because it involves bound-
ary constraints both at the initial time and the final time (note that X is
unknown). Proposition 1 reveals structure in the nonlinear program (2.9)
that can be exploited.

The PMP approach is characterized by the following properties.
e It results in an open loop control program. This means that the optimal
solution is only known for a particular initial condition zo. If the solution is
perturbed from the optimal by a disturbance then the optimal control may

no longer be effective. The resulting system is therefore more sensitive to ;
disturbances. !

e It is generally easier to compute.

e It gives only a necessary condition for optimality.
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2.4 Example: Feedback Versus Open Loop
Consider a particle moving along a 1-dimensional axis
Tp41 = Ty +Ug, Zp given.

The state = denotes the position of the particle and the control » is the movement
of the particle from one time instance to the next. We will compare open loop
and feedback solutions for this problem with respect to their ability to reduce the
effect of disturbances.

Let us assume that we want to bring the particle to the origin in two steps
while using minimum control energy. This gives rise to the optimization problem

Tpt1 = Tp + Up

J*(0,z9) = minui +u? s.t.
u 2o =0
=minug +u? st zo4ug+u; =0

= minud + (2o + yo)* = =

and the optimal control sequence becomes

" 1
ugy = p(0,20) = —5%0,
u’i‘ = ,U;(].,CE()) = —5330.

The notation uf, = pu(k, o) is used to clarify that the control depends on the time
k and the initial state zo. Such control laws are called open loop control.

We obtain an alternative solution by using dynamic programming. The DynP
algorithm gives

0, z=0

N = {oo &£

Note that the cost is infinite unless the constraint z = 0 is satisfied. The next
step of the DynP algorithm gives

J(1,z) =min {v? + J(2,2 + u)} = 2?
and the minimizing control is u* = p(1,2) = —z. We used that u = —z because
otherwise J(2,z + u) = oo, which would give J(1,z) = co. The final step of the
DynP algorithm gives

J(0,2) = min {u® + J(1,2 + u)} =min {«* + (z +v)?} = .;_3;2
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Mk Tk
u(k, 3:0) Iy Tk
Thtl = T + wp [—B B u(k:,x) = O—B= 211 = T + Ui =,
Open Loop Control Feedback Control

Figure 2.3: Open loop versus feedback control.

1 :
and the minimizing control is u* = p(0,z) = —5% Hence the optimal control is

Z 1
uy = p(0,z) = —5
uy = u(l,x) = —x

The notation uj, = p(k,zx) is used to clarify that the control depends on both
time and the current state. Such control laws are called feedback control.

Disturbance Sensitivity

Consider the situatation in Fig. 2.3 where the left part illustrates the open loop

situation and the right hand side illustrates the feedback control situation. The

signal 7, denotes a disturbance and we first assume 19 # 0 and g, =0, £ > 1.
For the open loop case we get

1
zy = o + (0, 20) + 10 = 5%0 + 7o

To = T1 + ,U(]-, 930) =T

We do not reach the origin as desired!
In the closed loop case we get

1
1 = 2o + p(0, 20) + 10 = 520 + o

Ty = T4 +H(1,$1) =0

The feedback compensated for the disturbance. Note however, that if the distur-
bance is persistent, i.e. m # 0, £ > 1, then the position of the particle can still
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be disturbed and thus deviate from the desired position at the origin. In order
to avoid such a situation we could consider optimal control over an infinite time
horizon.

2.4.1 Infinite Horizon Optimal Control

Consider

o0
m&n E T+ ur st Tpyr = T+ Up
k=1

The cost function forces the state and the control to converge to zero. We obtain
a solution by solving the Bellman equation

J(z) =rr}uin{$2 +u*+ J(z+u)}

Let us try the form J(z) = pz?, where p > 0 in order for J to be positive definite.
This gives

pr’ = min {2 +* + p(z + u)?}
2

. P 2, .2 B
=min(l+p)(u+ —=z)"+2°(1+p—
in(1-+p)u+ —e)” + 21+ p - o)
2 P’
z(1+p-17 p)
Hence, the optimal feedback control is
p
'u‘* — r)— ——2
plx) = -7+ B
where p is the positive solution to the Riccati equation
pPP=1+p (2.10)

Let us consider the situation in Fig 2.4. We obtain the solution

Thy1 = Tp + pr) + M = Ty + M
1
71 +p($k—1 55 #(wk—l) + Mh—1) + M

1
1+p
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Tk

i
p‘(g;) —=O)—8 )4 = T + Uy L

Y

Figure 2.4: Infinite horizon control.

We see that the influence of the initial condition decays to zero since 1/(1+4p) < 1.

We also see that the contribution from old disturbances is reduced as time evolves.

Hence, the infinite time horizon optimal control problem results in a stabilizing

(convergence) feedback controller that also gives robustness to the disturbance.
We have the following conclusions

e Feedback solutions have the advantage that the effect of disturbances can
be compensated for.

e Infinite time horizon optimal control gives both convergence and distur-
bance compensation. Note that the convergence to the desired value (zero
in our example) in general is slower than if a finite time horizon optimal
criterion is used for the control design.

e It is usually easier to derive an open loop controller than a feedback con-
troller.

OP‘LMO& Gaw‘\‘t‘@.& %T“ lﬁ%l) KTH'



34

CHAPTER 2. DISCRETE OPTIMIZATION




Chapter 3

Dynamic Programming

We will in this chapter discuss dynamic programming and the related Hamilton-
Jacobi-Bellman equation. We use the ideas from the previous chapter to build
the right intuitive understanding of the important principle of optimality and the
associated dynamic programming equation.

3.1 Continuous Time Dynamic Programming

We consider the optimal control problem

$(t) = f(t,sc(t),u(t))
z(t;) = i, u(t) €U
(3.1)

o
minimizeqb(m(tf))—l—/t_ fo(t,z(t),u(t))dt subj. to {

where t; and t; are fixed initial and terminal times and z; is a fixed initial point.
The end point z(t;) is free and can take any value in R™. The control is a piecewise
continuous function, which satisfies the constraint u(t) € U, for t € [ti, t7]. It
should be remarked that we could extend everything in this section to the case
when U = U(t, ), i.e., the control constraint set depends on time and the state.

We will embed the optimization problem (3.1) in a larger class of problems
by considering optimization from any initial point (o, Zo), where to € [ts, t7] and
7o € R™. It turns out that these optimization problems are related via a partial
differential equation, viz. the Hamilton-Jacobi-Bellman equation (HJBE).

Let u(-) be an admissible control on [to, /], i.e., it is piecewise continuous with

35
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u(t) € U for t € [ty,t;]. Then the cost-to-go function is defined as!

L7
S(to, mo,u(")) = d(x(ts)) + [ folt,z(t), u(t))dt
to
where &(t) = f(t,z(t), u(t)), z(to) = xo. Next, we define the optimal cost-to-go
function as® (this is also called the value function)

J*(tg, SEO) = Hl(l§1 J(to,.’]ﬂo, H())

where the minimization is performed with respect to all admissible controls. This
means in particular that the optimization problem (3.1) can be written

min J (¢, o, u("),

where again the minimization is performed with respect to all admissible controls
u(t) € U. Moreover, if u*(-) is the optimal control function then

J*(t,', IE;‘) = J(ti: Ty, ut(')):

which of course means that J*(t;, z;) is the optimal value of (3.1). Note also that
J* must satisify the boundary condition J*(¢;,) = ¢(z).

We next prove the principle of optimality, which immediately leads to the
dynamic programming equation. This equation is then used to show that J*
must satisfy HJBE.

The Principle of Optimality

The principle of optimality states a fundamental property that holds for all op-
timization problems considered in this course. It simply says that the restriction
of an optimal control to a subinterval is optimal for the corresponding restricted
optimization problem. This is an obvious observation but we still give a formal
proof.

The principle of optimality is illustrated in Figure 3.1.

Proposition 2. Letu* : [ty,t7] — R™ be an optimal control for minyy J(to, zo, u(-))

that generates the optimal trajectory x* : [ty,t;] — R"™. Then, for any t' €
(to,t5], the restriction of the optimal control to [t',t7], w*lie,), is optimal for
minyy J(#', 2*(t'), u(-)) and the corresponding optimal trajectory is |1t

1We implicitly assume that for each admissible control u(-) : [to,tf] — U, there exists a
unique solution to the differential equation & = f(¢,z,u), 2(¢y) = 0. (This is true if the vector
field is sufficiently regular, see the next chapter for a discussion.). This assumption makes
J dependent only on %y, a9, and u(-), and not the full trajectory z(-), since it is completely
specified by the other three.

2We have assumed there exists a minimizing solution otherwise min should be replaced by
inf. This assumption is made throughout the section.
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- Tt

il D
Fs

”

z*(t')

u* | (#5] z” ttf)
'U:* | [toltl]
0

Figure 3.1: Illustration of the principle of optimality. The solid trajectory cor-
responds to the optimal control function u*(-) and the dashed trajectory corre-
sponds to another admissible control 4(-). The principle of optimality says that
if u*(-) is optimal over [tp, %] then it is also optimal over any subinterval. This
means in particular that the dashed trajectory corresponds to a higher cost (or
possibly equal if the optimal control is not unique) than the solid trajectory.

Proof. By additivity of the cost function we have

t!
J* (g, w) = folt, z*(t),u*(t))dt + J(t',z* (@), u*|w.ep)

to

Suppose that u*|j s, is not optimal over the interval [t, 7] when the initial point
is z(t") = 2*(#). Then there exists an admissible control function (+) defined on
[t',tf] such that

J(t,z* (), a(:)) < J(, 3" (), u | e)-
The control

u(t) - {u’*(t)1 te [tﬂvt’) (32)

a(t), telt,tyl

is admissible for (3.1) and gives the cost
tl
J(to,zo,u(-)) = [ folt,z(t),u*(t))dt + J(t',z*(t'), &(:))
to

tf
< [ folt,z*(t),w (t))dt + J(F, 2" ('), w*i¢)) = J* (b0, Zo)
to

This contradicts the optimality of u*(-) and we conclude that the restriction
u*|p,¢,] 1s optimal over [, ¢¢]. O
The Dynamic Programming Equation

The dynamic programming equation is a direct consequence of the principle of
optimality. Let (%o, o) be given. From the principle of optimality it follows that
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the optimal cost-to-go function satisfies the relation

£
J*(to, o) = /t fols, 2*(s), u*(s))ds + J* (¢, 2*(¢))

=i { | ol (o) utsyds + 1, m(t’))} .

where the minimization is with respect to all admissible controls, i.e., u(s) e U
for s € [to,t']. If we let the starting point be (¢,z(t)) and ¢ = ¢ + At then the
above relation becomes

t+At
)] = 1151(1}1 {ft fo(s,z(s),u(s))ds + J*(t + At, z(t + At))} , (3.3)

This is the dynamic programming equation and it shows that the optimal control
can be computed in a backward direction. In other words, if you know J*(t +
At,z) for any € R then you can compute J*(t, x) using this formula. This is
particularly useful for discrete time systems with a discrete state space as we saw
in the previous section. For continuous time systems we take one more step and
derive the HIBE, which in general gives a more constructive way to determine
J*.

Hamilton-Jacobi-Bellman Equation (HIBE)

We will here derive the Hamilton-Jacobi-Bellman Equation using the dynamic
programming equation. We have (for an arbitrary initial point)

to+AL
J*(to, z0) = 111(115] { f Jo(s,z(s),u(s))ds + J*(to + At, z(ty + At))}
u(: to
to+AtL
= 111(1]):1 {f fg(s, 1:(5), U(S))d& + J*(tg + At, g+ f(f.'g, .'E(to), U(to))At + O(At))}
u(- to
= 111;1(131 {fg(to, xp, u(to))At + J*(to, zo) + (%‘- (to, :B(J)

+

aa'f (to, z0)" £ (to, wo, u(to))) At + o(At)}

where in the second equality we used the Euler approximation of the system

equation, z(ty + At) = zg + f(to, %o, u(to)) At + o(At), and in the third equality
we made a Taylor expansion of J* around (tg,zo). If we divide by At and use
the fact that lima,—0 o(At)/At = 0 then we get?

aJ* . aJ*
—E(fn,xo) = mij {fO(tO:EOa u) + E(tm $0)Tf(to,$o,u)} )

8This is not as trivial as it looks since one should justify that min, and lima; ,q can be
permuted.
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where the optimization over u is pointwise. Since this partial differential equation
was derived for arbitrary zo € R™ and to € [t;, ty] it follows that

2% (t,) = min { falt, ) + o) 5 'u,)} | V() € [t /] X R”

ot
(3.4)

which is the Hamilton-Jacobi-Bellman Equation (HJBE). The boundary condi-
tion to HIBE is J*(t;, z) = ¢(x).
What we have shown is the following: Assume that

e there exists an optimal control u*(:)

e the optimal cost to go function J* is C* in both arguments
then

e J* solves the HIBE in (3.4).

e u*(t) is the minimizing argument in (3.4) (pointwise).

This necessary condition for optimality is not as useful as it may appear since
it assumes that the value function J* is C', which is not always the case. The
Pontryagin minimum principle gives much weaker and more useful necessary con-
ditions. However, the great thing about the HJBE in (3.4) is that it also gives a
sufficient condition for optimality.

The Verification Theorem for Dynamic Programming

We will next state and prove one of the main results of this course. The theorem
shows that the HJBE in (3.4) gives a sufficient condition for an optimal control to
exist. This gives us our first systematic method to synthesize an optimal control.

Theorem 3. Suppose
(i) V : [ti,tf] x R® = R is C* (in both arguments) and solves HIBE

O (02) = mip { im0 + S0 50

V(tf! IL‘) = gb(.’B)

(3.5)

(i) p(t,z) = arg I%l{ljl {fo(t,m,u) + %—Z(t, :E)Tf(t,:ic,u)} is admissible?

4This means that u*(t) = p(t, 2(t)) is a piecewise continuous function for any closed loop
solution. The closed loop system equation @(t) = f(t,z(t), u(t, 2(¢))) must therefore be well
defined on [t;, tf] for all initial conditions. This topic is discussed in Chapter 4.
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Then

(a) V(t,2) = J*(t,z) for all (t,3) € [t;,t;] x R™.

(0) ult,z) is the optimal feedback control law, i.e. u*(t) = w(t, z(2)).

Remark 3. The second condition (i) means

. oV -
mip { 5,0+ G .22,
av T
Remark 4. The theorem says that

#(t) = f(t,2°(2), u (1), o*(t) =2
w(t) = ult, 2" (1)

is the optimal solution to (3.1).

Proof. Let u(-) be an admissible control on [ty, ;] and let z(-) be the correspond-
ing solution to & = f(t, z(z), u(t)), z(ts) = zo. We have

iy |
V(ts,2(ty)) = V (to, 20) = f V(t, 2(t))dt

= [ G ) + o a0 1o u)lde = ~ [ ot 0, u)et
(3.7)

where the inequality follows since (3.5) implies
ov ov
5 (62(0) + 5 (6,2 (0)T 7, 2(0), u(t)) > —fo(t, 2(6), u(t).

Using V (t, 2(ty)) = ¢(z(t5)) in (3.7) gives

V(to,20) < $(a(t;)) + / " folt, 2(8), u(®)) dt = J(to, a0, u(-)

This inequality holds for all admissible controls, in particular the optimal u*(-).
Hence, we have shown that

V(to, zo) < J*(to, zo) (3.8)
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for all initial points. We will next see that equality is obtained by using u(t) =
u(t, 2(t)). Indeed, by combining (3.5) and (3.6), and then rearranging terms we
get

%Z—(t,x) - g—:—(t,m)Tf(t,sc,p(t, z)) = —folt, z, p(t, z))

Integration of this equation then gives (where we again use that V(ts, z(ts)) =

(z(ts)) and u(t) = p(t, 2(t)))

V (to, zo) = #(2(ts)) + ! folt, 2(t), u(t))dt = J(to, zo,u(-)) = J*(to,%0) (3.9)

tg

where the last inequality follows since J*(to, Zo) = miny() J(to, Zo, u(+)). Combin-
ing the inequalities in (3.8) and (3.9) gives V (o, Zo) = J*(to, zg). This also shows
that (z(t), u(t, z(t))) is the optimal state and control trajectory, i.e., T (1) = x(t)
and u*(t) = p(t,z(t)). Since (to, o) are arbitrary, this proves the theorem O

Before we give some examples we make a short comment on the use of Theo-
rem 3. For a given optimal control problem on the form (3.1) we take the following
steps

1. Define the Hamiltonian

H{t,z,u, X) = folt; z,4) + M f(t, z,u).
Here X € R™ is a parameter vector.

2. Optimize pointwise over u to obtain

fi(t, =, \) = argmin H(¢, z,u, ) = argmin {folt,z,w) + N f(t,2,u)} .

3. Solve the partial differential equation

ov - ov
_'6_t(t7 .’E) =H (ty z, F’(t:maa(t T )a Sz (t :I.'))

subject to the initial condition V (t5,z) = ¢(z).

Then p(t,z) = plt, z, %—Z(t, z)) is the optimal feedback control law, i.e. u*(t) =
p(t, z(t)).

5The same optimization as in step 2 is a part of the conditions in PMP.




42 CHAPTER 3. DYNAMIC PROGRAMMING

3.2 Examples

We next give some examples.

Example 9. Consider the mass and spring system in Figure 3.2. The system
equation is

mi=—kz+ I
We assume for simplicity of notation that k/m = 1, and that the force is bounded
by F/m € [~1,1]. Our goal is to find a control law for the force function such

-

F

Figure 3.2: A mass hanging in a spring.

that the deviation from zero is as large as possible after time ts. It is assumed
that the initial condition is known (2(0), £(0)).
The first step is to convert the system into state space form. Let z; = z,
Ty = 2. Then
3.’,‘1 = X9, ml(O) = Z(O)
2'72 = —I +’£L, 33'2(0) = Z(O)

If we define
[0 1 |0 B _12(0)
A= [_1 0]' B= H C=[1 0], z= [2(0)]
then the optimization problem can be stated as

&= Ax+ Bu, z(0)=umx

imize Cx(t bj. t
maximize Cz(tf) subj. to {]Hlﬁl

We follow the solution strategy:
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1. H(t,z,u,\) = \T(Az + Bu)
2. fi(t,z,\) = arg maxy,<1{\T(Az + Bu)} = sign(A\” B), which gives
H(t,z, it z,)),\) = X[ Az + [\TB|.

3. As the last step we need to solve the HIBE
v oV T ov T
subject to V(tf,z) = Cu.

This HJBE is affine (linear+constant) with respect to x. Inpsired by this we try
V(t,z) = ¥(t)Tz + a(t), where ¢ and « are functions we need to determine.

The end condition gives V (5, z) = ¥(ts)Tz + ots) = Cx(ty), which holds if
¥(t;) = CT and a(ts) = 0. The HIBE becomes

—pTz — & =T Az + [¢TB|
which holds if & = —[/T B| and 1 = —AT4). Putting everything together gives
the optimal control
1 = —ATy,
P(tg) = CT

It is now possible to explicitly compute this control function and then determine
the maximum deviation z(ts).

u*(t) = sign(v(t)T B) where {

Example 10. Solve the linear quadratic optimal control problem
tf
tibmize (8 Qe i) & f )T Qx(t) + u(t)” Ru(t))dt
0
subj. to =i jrar
3’:(0) =Ty
where Qo and @ are symmetric positive semi-definite matrices and R is a sym-
metric positive definite matrix. The solution strategy gives
1. H(t,z,u,)\) = 27Qz + v" Ru+ M (Az + Bu)
2. 7i(t,z,\) = arg min, {2TQz +uT Ru+ \T(Az+ Bu)} = —3R"*BT). To see
this we differentiate with respect to u and look for a stationary point. This

gives 2Ru + A\TB = 0. Hence, u = —3R™' BT\, which must be the unique
minimizing argument since R is positive definite.

We get

H(t,z, fi(t,z, ), \) = 27 Qz — i,\TBR‘lBT)\ + M Az
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3. Inspired by the quadratic form of H(t,z,[i(t,z,)),\) and the boundary
condition V(tf,2) = 27 Qoz, we txy V(t,z) = 2T P(t)z, where P is a sym-
metric matrix function (it must also be positive semidefinite since the cost
function is positive).

Using Vi(t, z) = 27 P(t)z and V,(t, z) = 2P(t)z, the HIBE PDE and its boundary
condition become

z¥[P+Q — PBRBYP+ PA+ ATP|z = 0,

T P(ty)z = 2TQoz

for all (¢,z) € [0,%7] x R". Hence, P is the solution to the Riccati equation
P+Q—PBR'BTP+ PA+ATP=0, P(t;)= Q.

The optimal feedback law is u(t,2) = —R™'BTP(t)z and the corresponding op-
timal cost is V' (0, zo) = 27 P(0)x,.

Remark 5. We can let () and R be piecewise continuous functions of time and
still get the same result.

Remark 6. It can be established using the results in the next chapter that there
exists a solution to the above Riccati equation in the case when R > 0 and

@0, @ 20.

3.3 Practical Aspects

Continuous time dynamic programming gives
e sufficient conditions for optimality
e optimal solutions in feedback form

These are both extremely satisfactory properties. However, there are also several
drawbacks

e Analytic solutions can only be obtained in a few cases (In particular so
called linear quadratic, or LQ, problems).

e The HJB partial differential equation is in general very hard to solve numer-
ically. The main problem is that the full state space must be discretized and
a huge number of samples are needed in order to get reasonable solutions.
This is called the curse of dimensionality.

o It is required that the value function is continuously differentiable, which is
not always the case.
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3.4 Terminal State Constraint (Optional)

It is possible to consider variations of the optimization problem in (3.1). We will
here consider optimization problems where there is a terminal boundary condition
G(ts,x) = 0, where G : R x R" = R” (p < n). The optimal control problem can
be stated as

minimize ¢(ts, z(ts)) + _/: fo(t, z(t), u(t))dt

5 = £t 2(0), u(t) (3.10)
subj. to < z(t;) = z;, G(ts,z(ty)) =0
uw(t) e U, t; 20

Note that t; is a free variable in this problem (If ¢ is fixed then the t; dependence
of G and ¢ can be removed). Again, let the value function is defined as

J*(t, z) =1;1(;§1{¢(tf,m(tf))+ftffo(t,m(t),u(t))dt}

which satisfies the boundary condition J*(t;, ) = ¢(ts, z) on the manifold G(ts,z) =
0. We have the following result
Proposition 3. Suppose

(i) V is C* (in both arguments) and solves HIBE

-5 (43) =g;ig{fo(t,w,u)+%g“’$ff “""“’”)}

(3.11)
V(ts,x) = (ts,z) when G(tr,z)=0

o . ov T . .

(1) p(t,z) = arg min folt,z,u) + a(t,w) f(t,z,u) ¢ is admissible
Then

(a) J*(t,x) = V(t,z) for all (t,z) € [titf] X R".

(b) ult,z) is the optimal feedback control law, i.e. u*(t) = u(t, =(t))-
Proof. Completely analogous with the proof of Theorem 3. O

Remark 7 (Stationary systems). If the system dynamics, the cost function, and
the boundary conditions are independent of time (and if the final time is still an
independent variable) then the optimal control and the value function are also
independent of time. The HJBE in (3.11) becomes

0= mip { o)+ @ 1w
V(z) = ¢(z) when G(z)=0

(3.12)
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The above results appears simple to use but there is a catch. It turns out that
even very simple problems may give rise to value functions that do not belong to
C. We illustrate this with a simple example.

Example 11. Consider the optimal control problem

t=—-x+u, 2(0) =z
J*(zo) = minimizet; subj.to { x(t;) =0
|’H.| < 1, tf >0

It is easy to verify that

p(x) = —sign(z)
J*(x) = In(1 + sign(z)z)

We note that V(z) = J*(z) satisfies HIBE
0=1-V'(z)z — |V(z)|, when z # 0 and V(0) = 0.
However, J* & C so our theory is not valid for this example.

It is possible to relax the assumptions on the value function in order to treat
the situation in Example 11 rigorously. We refer to [13, 5] for treatments on this
topic.



Chapter 4

Mathematical Preliminaries

We start with some theory for Ordinary Differential Equations (ODE). The chap-
ter also contains a brief review of the first and second order optimality conditions
for constrained nonlinear optimization problems.

4.1 ODE Theory

Consider the differential equation (t) = f(t,z(t)), z(to) = zo. Several questions
arise

e When does there exist a solution?
e When is a solution unique?
If there exists a solution then further questions arise

e How does the solution depend on the boundary condition (in this case the
initial condition)?

e How does the solution depend on the right hand side of the equation?
e How can we obtain estimates on the size of the solution?

Before we answer any of these questions we illustrate by means of a few examples
that these questions are justified.

Example 12 (No solution). Consider the system

o | =1, =z(t) =0
““(t)'{ 1, a(t) <0

The solution disappears to exist when z(t) = 0. The problem is that the right
hand side is discontinuous. It is not always the case that a discontinuous right

47



48 CHAPTER 4. MATHEMATICAL PRELIMINARIES

Figure 4.1: There is no solution at z = 0

hand side causes any problem and even if it does, it may still be possible to define
a solution. However, this requires a more sophisticated machinery than will be
treated in this course,

Example 13 (Lack of uniqueness). Consider

&(t) = z(t)/?, z(0)=0
Then z(t) = 0 is a solution. There are, however, more solutions. Separation of
variables gives

dx

3, 2 _
S B 28 — ¢ r = (Z(t — ¢))3/2 -
i dt & 5% t—c & =z (3(t €))}? (ift—c>0)

Hence, the initial value problem #(t) = z(t)'/3, 2(0) = 0 has infinitely many
solutions

=10 0<t<e
EVCE -0y, t> e

where ¢ > 0. See, Figure 4.2.

4 L t

J Y

Figure 4.2: There are infinitely many solutions to 2(t) = z(t)/3, 2(0) = 0.

The next example shows that sometimes solutions only exist on a finite time
interval.

Example 14 (Finite escape time). Consider the ODE

i(t) = z(t)*, z(0)=z0>0
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When z(t) # 0, separation of variables gives

d—m:dt s gie
it l—o

=t+ec

The choice ¢ = E gives z(0) = xzp. Hence, if o > 1 we get

To

$(t) = (1 —ﬁmgt)lfﬁ’

f=a-—1.

We see that z(t) — co as t — 1/(Bzh); See Figure 4.3.

Figure 4.3: Finite escape time. Here C' = ﬁacg

From the basic course on differential equations it is known that if the vector
field is C! then there exists a solution (at least locally). It turns out that Lips-
chitz continuity of the vector field is a less restrictive condition for existence and
uniqueness of a solution to the ODE.

Definition 2. Let @ € R™. We say that f is Lipschitz continuous in z on
[to, 1] x € with Lipschitz constant L (f € Lip(L)) if

“f(t! 181) - f(t1 1"2)" < L":El - 332”

for all ¢ € [to,t1] and 24,25 € (2.

Figure 4.4: The largest slope corresponds to the Lipschitz constant L
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We have the following propositions

Proposition 4. A vector valued function f is Lipschitz continuous if and only if
all its components f, are Lipschitz continuous, i.e.,

fe€lip & frelip, k=1,...,n
Proof. (<)

| fe(t, 2) — fu(t, y)] Li|lz —yl| =
Ift,2) = f&, I = EHflt,z) — fult,y)[?
STLE| |z — yl[?
(ZTLE) Ml — y?
L¥||z — y][?

IA

IA

E’flfk(tvm) - fk(ta y)lz
= |If(t,z) = f&t, )l
L?||z —yl|*

| f(t, 2) — filt,y)?

IA

IA

|

The next proposition shows that continuous differentiability of the vector field
is sufficient for it to be Lipschitz continuous.

Proposition 5. Assume that f(t,z) and %(t,m) are continuous in a closed and
bounded convez set [to,t1] X @ C R x R™. Then f is Lipschitz continuous in z
on [to, 1] X Q.

Proof. Let

M = max max {[af”|}
{ig=1,...m} (te)elto,1]xq | Oz;

It is clear that M < oo since all —L are continuous on the closed and bounded set
[to, t1] X €. For given ¢,z,y and a varlable s € [0,1] we have for all k € {1,...,n}

@ szt (1)) = af’“(t 52+ (1= 8)9) o (sa; + (1 - 8)y)

Z Ot (1, 5+ (1 — o) a; — )
j=r A

The mean value theorem of calculus says that

9(b) — g(a) = ¢'(c)(b — a)
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for some ¢ € (a, b) given that g € Cla,b] and g € C*(a,b). Using this gives
fult,2) — fult,y) = fult, 1z + Oy) — fi(t, 0z + 1y)
d
= 'd_s.fk(ta sz + (1 = s)y)ls=so(1 - 0)

= I ?(t, soz + (1 — 50)y) (%5 — ¥5)

for some s € (0,1). Square this expression and use Schwartz inequality to get
n 19f
it ) — P < Tl S 0+ (1 = s0)) P (2 = 95)
j
< nM?||z -yl
After summation, we obtain

Wt z) — £ < nenM?(|z —yl* = LP||z - y|*

which proves the proposition. O

Uniqueness and existence theorems

The following local existence and uniqueness results can be found in, for exam-
ple, [11, 6, 2].

Theorem 4 (Local existence and uniqueness). Assume f is piecewise continuous
int and Lipschitz continuous in x on [to,t1] X €, where @ C R™ is an open and
connected set. Then there exists § > 0 such that

#(t) = f(t, z(t)), 2(ty) = zg where zp € Q
has a unique solution over [to,to + 9].

Remark 8. The solution can be continued until we reach the boundary of [to, t1] X
.

Remark 9. The vector field in Example 13 is not Lipschitz continuous since we
have |z'/3|/|x| — oo as z — 0.

Theorem 5 (Global existence and uniqueness). Assume f is piecewise contin-
uous in t and globally Lipschitz continuous in x for t € [to,t1] (here & = R").
Assume further that || f(t,zo)|| < M fort € [to,t1]. Then

:E(t) = f(tax(t))a $(t0) = To
has a unique solution over [to,t1].

Remark 10. The system in Example 14 is not globally Lipschitz since |z¢| /|z| =
oo as |z| — oo (when a > 1).
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Dependence on the right hand side

We will first state a very useful result.

Lemma 1 (Gronwall-Bellman). Let o(t), B(t), where B(t) > 0, and z(t) be con-
tinuous scalar valued functions on [a,b] and let z(t) satisfy the inequality

z(t) < aft) +/ B(r)z(t)dr, t € [a,b)]

Then for all t € [a,b] we have

2(t) < aft) + [ B(r)g(t, 7)dr

where )
g(t,7) = a(r)els o)

Proof. Define

Fo) = [ Bmetriar (= Fl)=0)

Differentiation with respect to ¢ gives

% = B(t)a(t) < B(H)[alt) + F(t)]

ie., %f——-ﬂ(t)F(t) < B(t)(t). Multiplication with the integrating factor e~ Ja 8()do
gives

%Ie_ fople¥e p (®)] < B(t)a(t)e” JL Blo)do

Integration of both sides now gives
t
e~ Ja P@)do pr) _ e’F(a) < f B(r)a(r)e Ja Blo)do

which implies
t
Ft) < / B(r)a(r)el K)o g

where we have used F'(a) = 0. This shows that

oft) < a(t) + [ Ao, rydr
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We will next address the question of continuous dependence on the initial
conditions and continuous dependence on the right hand side [11].

Theorem 6. Let f(t,z) be piecewise continuous int and Lipschitz continuous in
x on [to,t1] X Q, where @ C R™ is an open connected set (f € Lip(L)). Assume
z(+) is a solution of the system

T = f(t: SL‘), CL‘(to) = Zp.
and that z(+) is a solution of the perturbed system
= f(t,2)+g(t2),  2(t) =2

where
lo(t,2)|| < M,  V(t,2) € [to,t1] x Q

If z(t) € Q and 2(t) € Q for t € [to, 1] then
y M.,
() — 2()l| < " |zo — ol + (") 1)
for all t € [to, t4].

Proof. The solutions satisfy

z(t) = 2o + t 1 f(r,z(T))dr

2(t) = 2 + [ [, 2(r)) + g(r, 2(r))]dr

Subtract and take norms to get

ll2(£) — (@)l < ll20 — zoll + || /t [f(r,2(7)) + g(7,2(7)) — f(r, z(7))ld7||
< |20 — ol + ; I(£(7, 2(7)) = f(7,2(7)) + g(7, 2(7) | d7

< oo — ol + [ 1r, () = f(m ()l + ] lg(r, 2(r))lldr

£ = gl + f Llia(r) — a(r)ldr + M(t — to)

to
We can now use Gronwall-Bellman Lemma with

a(t) = ||z0 — zo|| + M(t — to)
B(t) =L
This gives
M
2(t) — z(t)]| < 2|20 — mo|| + f(e.&(t—tg) ~1)

which proves the theorem. O
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The following corollary will be used in the next chapter.

Corollary 1. Let f(t,z,u) be piecewise continuous in t and Lipschitz continuous
n z and u, i.e.,

£ (821, w1) = f (B, 22, ua)|| < L([ler — 22| + lur — uall)

for [to,t1] x 1 x Qy, where Q; C R™ and Qy C R™ are open connected sets.
Assume z(+) is a solution of the system

z = f(t,:’L‘,’U.), :E(tﬂ) = Zo.

for a given piecewise continuous u(-) and that z(-) is a solution when we use
u(+) + du(-), where du(t) is piecewise continuous with ||du(t)|| < M. If z(t) € 4,
2(t) € N, u(t) € Qp and u(t) + du(t) € Qp fort € [to, 1], then

ll2(2) — 2(®)|| < M(e"t") —1)
for allt € [to,14].
Proof. The perturbed system has the vector field
f(t, z,u+ 0u) = f(t,z,u) + g(t, 2)
where g(t, z) = f(t, z,u + 6u) — f(t,2,u). Hence,
lg(t, 2)I| < Llloul| < LM, V(t,2) € [to, 1] x O

due to the Lipschitz condition. The result now follows from the previous theorem.
O

4.2 Linear Differential Equations

Consider a system of homogeneous linear differential equations of first order:
&(t) = A(t)z(t), =(to) =0 (4.1)

where A is an n x n matrix valued (piecewise) continuous function of time. From
the above theory we know that this set of equations has a unique solution defined
for all time. The solution to (4.1) can be written z(t) = ®(t,to)zo, where the
transition matriz is defined by the (matrix) differential equation

0P(t, s)
ot

For time-invariant systems (A is a constant matrix) we have ®(t,s) = e4(—2),
The transition matrix satisfies the following properties [14, 3]

= At)®(t,5), ®(s,8) =1
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1. ®(t,s) = ®(t,7)®(,s), for all ¢, 5,7
2. ®(t,s)™! = ®(s,1)
The solution to the system equation
z(t) = A(t)z(t) + B(t)u(t), =z(to) =0
is given by the variation of constants formula

z(t) = ®(t,t0)zo + ft ®(t, s)B(s)u(s)ds.

to
We give two important examples
Example 15. Consider a first order linear differential equation

#=a()z, 2(0)=ax
In this case the transition matrix becomes
B(t,s) = aly a(r)dr
and the solution of the differential equation is z(t) = ®(t, 0)x,.
Example 16. Consider a linear time invariant system
z= Az, z(0)=xg

where A is a constant matrix. Then ®(t,s) = eA(t~2),

several ways. Two simple ways are

1. Use the Taylor expansion

© Lk Ak
k!

k=0

53

(4.2)

(4.3)

It can be computed in

This is useful, for example, if A is diagonal or nilpotent, which means that

AY = 0 for some N. One example is A = [0 .

00
exponential
At _ 1 t

2. Another useful formula is
et = L7Y (s — A)7!}

where £ means the inverse Laplace transform.

], which has the matrix
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4.3 Nonlinear Programming

The first and second order necessary conditions for optimality of nonlinear pro-
grams will be reviewed here. We also introduce Newton’s method for solving
such problems. Many optimal control problems can be treated with completely
analogous methods. We will see this in Chapters 4, 7, and 8.
Let
91(z)
Gl@)=| : |, (p<n)
9p()

and consider the nonlinear program
minimize f(z) subject to G(z) =0 (4.4)

where f : R"™ — R and G : R" — R? are twice continuously differentiable. We
assume that the constraint set is regular, i.e., the gradients Vgi(z) are linearly
independent for all' z such that G(z) = 0. This means that the constraint set is
an (n — p)-dimensional smooth manifold.

The following results can be found in, for example, [15, 21].

First order necessary condition: If z* is a (locally) optimal solution of (4.4)
then there exists a vector of Lagrange multipliers A € R? such that

(1) G(z*) =0
(1) Vi(z*,)\) = 0, where I(z,A) = f(z) + ATG(z) is the Lagrangian.

The first order necessary condition is also called the Lagrange’s multiplier rule.

Second order necessary condition: If z* is a (locally) optimal solution of (4.4)
then there exists a vector of Lagrange multipliers A € R” such that

(i) G(z*) =0
(i8) Vi(z*,)) =0

(#4i) the Hessian L(z*,A) = foo(2*)+ > 5_; M+ (9k)za(2*) is positive semidefinite
on the tangent space M = {y € R": Vgi(z*)Ty =0, k=1,...,p}, i.e,

yTL(iL'*, /\)y >0 V’!J L= {y € R*: ng(l'*)Ty =0, k=1,... ap}

Second order sufficient condition: Suppose there exists z* and A € R? such
that

!t is enough that this holds in a neighborhood around the optimal point.
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(i) G(z*) =0
() Vi(z*,\) =0

(i17) L(z*, ) = foo(x*) + 351 Me(9)uz(z*) is positive definite on M = {y €
R™: Vai(c YWy =10, k=1,...,p}, 1,

yTL(z*, Ny >0 Vye{yeR"\{0}: Vg(z")"y=0, k=1,...,p}.
Then z* is a local minimum of (4.4).

Newton’s method

The idea behind Newton’s method for solving (4.4) is to solve the linearized
version of the first order necessary conditions recursively. This gives the following
algorithm:

Step 1 Guess initial values (z°, \°)
Step 2 Solve the system

Vi(z®, M) + Lz, \¥)6zF 4+ G (z*)Tor* =0

G(zF) + G (zF)oz" = 0 (4.5)

Step 3 Update z*t! = 2% 4 §z® M+ = > 1 60k b=k + 1.
Step 4 Stop if |[Vi(z®, \¥)|? + |G(z*)|? < €, otherwise go to step 2.

The second step of the algorithm corresponds to the first order necessary condi-
tions for the quadratic program

min Vi(z*, \*)oz* + (62F)T L(zF, \*)ozF  subj. to G(zF) + Go(z*)dz*F =0
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Chapter 5
PMP: A Special Case

We will here derive the Pontryagin minimum principle for the special case when
there is no constraint on the control (except that it should - as always - be
piecewise continuous), the final time is fixed, and when there is no terminal
constraint. The optimal control problem can be stated as

tf
minimizeqb(:n(t;))-l—ft. folt, z(t), u(t))dt

. :B(t) = f(t,ﬂ;‘(t),ﬂ(t))
subj. to {m(ti) .

(5.1)

where ¢ is continuously differentiable and the cost function f; and the vector field
f are continuously differentiable with respect to all variables ¢, z, and u.

Our derivation will be informal and based on variational arguments of the
same type as are used in the classical calculus of variations. We first notice that
the constraint can be written as

f(tax(t):u(t)) - .’L‘(t) =0
This implies that
A®)Tf(t,2(t), ult) — ()] =0
for an arbitrary differentiable function A(+), which is called the Lagrange multiplier
or adjoint variable. Then also the integral evaluates to zero

ty
AT 2(0,u) - 201 =0

i

If we add this integral to the cost function then we get the Lagrangian

T =p(a(t) + [ Ualt,2(t),u(®) + MO (£ (2, 2(0), u(t)) — #()]ds

ti

Ly
—b(alts)) + [ (6, (8), (), MB)) — (&) Ta(t)]dt

59
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where the Hamiltonian is defined as
H(t,z,u,\) = fol(t,z,u) + )\Tf(t, z,u).

Inspired by the Lagrange’s multiplier rule we expect to get a necessary condition
for optimality by letting the first variation (“first order derivative”) of J be zero.
So assume that u*(-) is an optimal control for! (5.1) and make a small perturbation

u(t) = u*(t) + du(t)

where du is “small”
||5u(t)|| <e Vte [tu,tf]

It follows from Corollary 1 in the previous chapter that the distance between the
optimal and the perturbed trajectories can be made arbitrarily small by making
¢ sufficiently small, i.e., if 2*(-) and z*(-) + dz(-) are the optimal and perturbed
trajectories, respectively, then [|dz(t)|| can be made as small as we like in [t;, #/].
We have

AJ = J(u() + du() - J(u*())
= ¢(a*(ty) + 0x(ts)) — d(a*(t1))

+ tf [H (t,z*(t) + 0z(t), u* (t) + du(t), A(t)) — H(t,z*(t),u*(t), \(t))]dt

ti

- ft Mt 2 (1) + dn(e)) e + /t fz\(t)T%a:*(t)dt

If we make a Taylor series expansion then, (all arguments of H, and H, are
supressed)

AT =gula*4g)ba(ir)+ [ [HZ5(0) + HIu(t) — M0 S 52(6)ds-+ o0

~{ Derss = [Nl + X0 o0l
=0u(a (06 (ty) + [ (HESo(0) + HEOuE) + (A sa(o)ae
— @) s2(®)] + ole)

where we have used integration by parts. Since z(t;) is fixed we have §z(t;) = 0.
The first variation ./ is now obtained by removing the higher order terms in o(e).

1Everything below holds also for the case when u*(+) is a locally optimal control.
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This gives
6J = (qu(x*(tf)) - )\(tf))T&C(tf) + lf[Hu(t: .’E*(f}), u’*(t)a )\(t))]TcSu(t)dt

+ [ 0,00, 20) + GO ) =
This clearly holds if

At) = —Ha(t, 2% (1), w*(8), )\(t) Atr) = do(z*(t5))
Hu(tvm*(t)? *(t)':}‘(t) -

The arguments we have used can be made rigorous by using functional analysis,
see [16]. We now state this version of the Pontryagin minimum principle formally.
First recall the definition of the Hamiltonian:

H(t,z,u,\) = folt,z,u) + \TF(t,z,u).

We have

Proposition 6. Let u*(:) be an optimal control for (5.1) and let x*(-) be the

corresponding trajectory. Then there ezists an adjoint variable A(+) such that

() () = ~2(t, "0, w0, 1), Mep) = (@)
(id) 2L (t,2*(t),u*(t), \(t)) = 0 fort € [ti, 1]
(44d) H*(t) = H(t,z*(t),u*(t), A(t)) satisfies the relation

o) = Bty — [ O S (6"t Wlads
i

for all t € [t;, ty].

Remark 11. The adjoint equation can alternatively be written
M0 = - 23, 20(0), u*(9) - 2L (,2°(8), w (O A)
=000 4 (), ) - Zaf’“(t 2 (8) u* ()M (D)

k=1

It can also be noted that

() = S5 (6,0(8), u(0) A0
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Remark 12. The third condition is particularly useful when f, and f are au-
tonomous, i.e., when they do not depend on time (fy(z,u), f(z,u)). Then it
reduces to (note that now H do not depend explicitly on time)

H(z*(t),u"(t), M2)) = const, t € [t;, 1]

To motivate condition (i44) we consider the special case when the optimal control
is differentiable with respect to time. The result then follows from a simple
derivation (all arguments are suppressed for sake of brevity)
H* = Hf + (H)"f + (H2)Ti+ AT f
= Hf + (H;)"u+ (Hy + N f = Hy
where we used the first and the second equations of the theorem. Integration
over time gives the desired result.

Remark 13. The proposition does not distinguish between a maximum or mini-
mum. It merely recognizes stationary points (extremals).

Conservative Mechanical Systems

To illustrate the fundamental importance of the above optimality conditions we
consider conservative mechanical systems which ‘behave optimally” in the sense
that a particular integral functional is stationary with respect to the dynamics,
see [1] for more details. We will show that the conditions in Proposition 6 lead to
the famous Euler-Lagrange equation and a characterization of the motion which
states that the sum of the potential and the kinetic energy is constant over time.
The example is taken from [4].

Example 17. The following notation is standard in mechanics

q Generalized coordinates (positions and angles). This is the state of the
mechanical system.

g Generalized velocity which we also denote u (¢ = u).
V(g) The potential energy of the system

T(q,q) The kinetic energy, which we assume to be of the form T(q,q) = 4T A(q)q,
where A(q) is a symmetric matrix.

L(g,q) The Lagrangian L(q,¢) = T(q,q) — V(q)

One of the fundamental principles of mechanics (“the principle of least action” )
states that the equations of motion must be an extremal (stationary solution) of
the cost function

Ju(?)) = /t Y L), u®)dt subjectio d(t) = uft)
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Hence, it must satisfy the conditions of Proposition 6. The Hamiltonian

becomes
H(g,u,\) = L(g,u) + \Tu,

The following equations must hold
() 30 = ~H,(a), w0 X0) = — 52 (a(0), utt)

(i3) Hy(q(t),u(t), M(t)) =0 for t € [t;,ty], which gives A(t) = —g—i(g(t),u(t))

If we use (44) in (¢) and the fact that ¢ = u then we get the famous Euler-Lagrange
equations from the Calculus of Variations

% (%i;(q(t),q(t))) - %‘;f(q(t), 4(t)) = 0. 6:2)

We will next use condition (iéz) of Proposition 6 to show that the sum of the
potential and kinetic energies is constant over time. To do this note that

oL, . oT, . .
6_4(""1) = %4 (9,49) = 2A(q)¢-

L
Hence, by (i7) above we get A = —g—q(q, §) = —2A(q)g and the Hamiltonian

becomes

H(q,4,)) = L(g,q) + \"¢ = T(g,9) — V(q) — 24" Alg)d = —(T(g,9) + V(2))-

Since the system is autonomous (time-independent) condition (#i%) of Proposi-
tion 6 becomes H(q(t), §(t), A(t)) = const, which thus means that T'(g(t), ¢(t)) +
V(q(t)) = const.

5.1 Linear Quadratic Control

We will here solve the same LQ) control problem as in Chapter 3 but now by using
Proposition 6. Let us state the problem again (here we have multiplied with by
factor 1/2, which makes the resulting equations cleaner but does not affect the
final result)

1 ty
minimize ix(t NEQox(ts) + % / [T Qx + u” Ru]dt
0

b o 80 = 420+ Bu(®)
bj. t {:B(O) 2
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where )y and () are symmetric positive semi-definite matrices and R is a sym-
metric positive definite matrix.
We start by writing out the Hamiltonian

e, 5,5, 3) = %(mTQm +uTRu) + \(Az + Bu)

It is usually wise to start with condition (i) since it allows us to find an expression
for the optimal control. We have

H,(t,z,u,\) = Ru+ BTA=0

which has the unique solution v = u(t,z,)) = —R~'BT ). If we insert this into
the system equation and the adjoint equation then we get

(t) = Ha(t, 2(t), Fi(t, 2(2), \(2)), A(t)) = Aa(t) — BRBTA(®), (0) = 2o
A(t) = —Ha(t, a(t), At 2(2), (), (1)) = —Qa(t) — ATA®), Mty) = Qoz(ty)
These equations can equivalently be written

B- [ 5 B ) o) oo

v

H

where the matrix H is called the Hamiltonian matriz. Such matrices have some
special properties that will be discussed below. The differential equation in (5.3)
is called a Two Point Boundary Value Problem (TPBVP), since some of the
boundary conditions pertain to t; and some to t;. PMP often gives rise to TP-
BVPs that in general cannot be solved analytically. We discuss one solution
method (shooting) for TPBVPs in Chapter 10.

Fortunately, the TPBVP in (5.3) is easy to solve. Let us introduce the tran-
sition matrix ®(t, s) = e"¢~*) with block structure

_ [Pult,s) Pua(t,s)
®(t,s) = [q)m(t,s) @22@:?)]

where each block matrix has size n X n. Then it follows from (5.3) that the
unkown parameters A(0) and z(t) must satisfy the linear equation

zo | _ [Pu(0,t7) @12(0,tf)| | 1 2t = [211(0:27) + D15(0,2£)Qo
[A(O)} h [@21(0’tf) (D”(O’tf)] [Qﬂ] (er) = [‘I)zl(oatf)‘l‘q’zz(oytf)Qo 2(ty)-

It can be proven that ®;,(0,ts) + ®12(0,%5)Qy is invertible (we will discuss this
in more detail in the next subsection), which means that we can solve for z(t;)
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in the first equation: z(t;) = (11(0,t5) + ®12(0,t5)Qo) 2. This in turn gives
the unknown initial condition for the adjoint variable

M0) = (@21(0,2) + ®22(0,25) Qo) (®11(0, 5) + @12(0, t1)Qo) " To. (5.4)

So far PMP has given us the following information: If A is the solution of
the adjoint differential equation with the initial condition in (5.4), then u(t) =
—R'BT\(t) is a candidate for the optimal control. This is much less than we get
from using dynamic programming where we learnt that u(t) = —R™BT P(t)x(t)
is the optimal feedback solution. Here P is the solution to a Riccali equation. It
is fortunately possible to show that the two solutions are identical. We do so in
the next section by using standard arguments.

Derivation of the Riccati Equation (Optional)

It can be proven that? ®y;(t,t7) + ®1a(t, t5)Qo is invertible for all ¢ € [0,f]. In
complete analogy with the derivation of (5.4) we can then obtain

At) = (Palt, ty) + Paalt, )Q0) (Pur(, ) + ®15(t, 1) Qo) " (). (5.5)
P()

where we have denoted the total matrix P(t) anticipating that we will obtain the
optimal feedback solution u(t) = —R™*BTA(t) = —R"'BTP(t)z(t). In order to
do this we need to show that P(t) satisfies the Riccati equation. If we differentiate
both sides of (5.5) and use (5.3) then we get

(—-Q — ATP(t))z(t) = (P(t) + PA— P(t)BR™'B” P(t))(t)
From this we can conclude that®
P(t) + A@#)TP(t) + P(t)A(t) + Q(t) = P(t)BR'BTP(t), P(t;)=Qo (5.6)
where the boundary condition is obtained from

P(t;) = (Pa(ts, ts) + Paalty, tr)Qo) (Rualts, tf) + Pra(ty, 15)Q0) ™
=0+ Qo) +0)™" = Qo

We have thus proven that PMP gives the same result as HIBE. We have also
learnt that the solution to the Riccati equation can be obtained in two ways.

2A quick way to prove this is as follows (This is essentially Kalmans argument from his
famous paper [10]). The LQ optimal control problem is strictly convex since R > 0, @ > 0,
and Qg > 0. This means that there exists a unique optimal solution, which must satisfy PMP.
This in turn means that the transition matrix of the closed loop system will be ¥(t,t5) =
D11(t,ts) + D1a(t, t5)Qo. A transition matrix is invertible!

3To see this we notice that our derivation of the optimal control is not dependent on the
initial condition (tg,2o). Hence, the same equation would have been obtained for any initial
point %g and this means that x(¢) can be arbitrary.
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1. Solve the Riccati differential equation in (5.6)

2. Solve the Hamiltonian system (a linear matrix differential equation)
56014 s8], -] e
) [-@  -AT V)" PG Qo '
backwards on ¢ € [0,%5]. Then P(t) = ¥(¢)X ()L

Example 18. Consider the Rocket car problem in Figure 1.3. The problem is to
drive the rocket car from rest at position zy to rest at position 0. An approximate
solution is obtained by considering the following problem with a terminal penalty

” ¢ = Az + Bu,
minimize ||z(t;)|* + / u(t)?dt subj to 20
0 z(0) =

where

01 0

A=l o] =]
The first term in the objective function penalizes deviation of the final state
from the zero vector while the second is used to ensure low energy consumption.

We use the Hamiltonian system in (5.7) to compute the solution to the Riccati
equation

)_'(:8(113—01)( X)) _[1
B-1 88 3|0 fl-E
- y 4
which gives
0] = [e6)

= G = 1)+ 3 =24 75 = 170) [

Some calculations gives

L4+ (t—t)3/6 t—t;—(t—t5)2/2
[X(t)}z (t—t5)*/2 1—(t—t5)
U(t) 1 0

—(t—1y) 1
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and the optimal feedback solution becomes u(t) = —R™'BT P(t)z(t), where
P(t)=[ 1 o] [1+(t—t§)3/6 t—tf—(t—tf)ﬂ/z}“l
—(t—t5) 1] | (E—t5)°/2 1—(t—ty)
141ty —1 t; — 4 (ty — t)2/2
[tf —t+(ty—t)?/2 1+ (-1t + %(tf - t)‘"’]
14+t; —t+ (ty —1)3/3 + (t5 — t)4/12

. [tf—t+(tf—t)2/2 1+(tf—t)2+%(tf—t)3]
~EERg = 1+t —t+ (b —0)3/3+ (8 —8)3/12

A property of Hamiltonian matrices (Optional)

We will show that the eigenvalues of the Hamiltonian matrix introduced above are
symmetric with respect to the imaginary axis. This can have severe consequences
for the solution of two point boundary problems. The reason is that the transition
matrix ®(t;,0) = e*f will have eigenvalues that are symmetric with respect to
the unit circle (if X is an eigenvalue of €*!/ then also 1/ is an eigenvalue). In
particular, if )\ is an eigenvalue of H with very large real part (Re A >> 0)
then s will have one eigenvalue with a very large absolute value, eMs, and one
with a very small absolute value, e~/ This tends to make **f numerically ill
conditioned.

Define J = _UI é], which satisfies the property J~! = J¥. A matrix is

called Hamiltonian if it satisfies
HYT+ JH =0.

It is straightforward to verify that # in (5.3) satisfies this property.
The Hamiltonian property will now be used to prove that if A is an eigenvalue
of H then also —)\ is an eigenvalue of H. Indeed, if we have

#lal=2[)

JH [’”1] = % [ e ] _ butalso JH ["’1] — —HTT M s T [ va ]
Vg —U () Vg —U

where in the second equation we used JH = —HTJ. The two right hand sides
show that —) is an eigenvalue of HT. But 7 and H” have the same eigenvalues
so this also means that —\ is an eigenvalue of H.

then
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5.2 Derivation Using Dynamic Programming (Op-

tional)

We will in this section use the value function obtained using dynamic program-
ming in order to give an alternative derivation of PMP. We will make the strong
assumption that the value function J*(t,z) is twice continuously differentiable
(which not always is the case). What we will learn from this approach is that
the adjoint variables can be interpreted as the gradient of the value function with
respect to the state vector.

The value function satisfies HIBE

Ji(t2) + fo(t, =, u(t, 2)) + J3 (¢, 2)T f(t, 2, u(t,2)) = 0, V(t,z) € [t;, 7] x R™.
Differentiation with respect to = and t, respectively, gives

Jor(t:2) + fou(t, @, p(t, 2)) + I3, 2)T (8, 2, (b, 2)) + folt, @, p(t, )T T2(t, 2) = 0

(5.8)
Ji(t, @) + for(t, @, ult, 2)) + Jg(t,2)T (@, ult, @) + T2, 2)T fult, 2, ul(t, @) = 0
(5.9)
where
847 &J an 8f
driz1 """ Ozpm dr1 ' Ozn
Jop= | 1 ol fe= :
a%J 82J Afn Bfn
dz1Tn, " OTnTa 8zy " Ozn

where J3, = (J3,)7 and Jf, = J?, since J* was assumed to be in C2. Let us
now evaluate the equations for a particular optimal control and state trajectory
u*(t) = p(t, z*(t)), where &* = f(t,2*(t)), 2*(t;) = z;. If we introduce

A(t) = Jz(t, =*(t))
Ao(t) = J¢ (¢, 27 (t))

then
M) = T (t,2°(8) + Tt 2 ()T F (1, 2* (1), w*(1)),  Mty) = dala” ()
AU(t) = J:;(t: E*(t)) + ‘];t(t7 sc*(t))Tf(t,:c*(t), u‘*(t))a )\O(tf) =0
Using this in (5.8) and (5.9) we get
A(t) = —foolt, @ (8), uw* (t)) — fault, 2 (2), " (£))TAE) = —Halt, 2*(2), w* (£), A(1))
o) = = foult 2*(8), ' (2) — MO flt, 2" (1), u (1)) = — Hy(t, 2" (), u* (2), A(t))

where the Hamiltonian is defined as in Theorem 6. From this discussion we draw
the following conclusions
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e the adjoint variable is the gradient of the value function with respect to the
state vector.

e In dynamic programming the value function is obtained by solving a par-
tial differential equation (HJBE). This is a consequence of the approach of
looking for an optimal control from any initial point.

e In PMP we only solve for the value function (or rather its gradient which is
the adjoint variable) for a special initial condition. This gives a two point
boundary problem for ODEs, which is normally much simpler to solve than
the HIBE.
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Chapter 6
PMP: General Results

We will in this chapter discuss the Pontryagin minimum principle for several
cases. The derivation will be done in exactly the same spirit as in the original
book by Pontryagin and his colleagues [23]. We start with their simplest case
when the system is autonomous and when the initial and final states are fixed.

6.1 Autonomous Systems: Fixed Initial and Fi-
nal States

We consider the optimization problem

s i(t) = f(z(t), u(t))
J* = minimize / fo(z(t),u(t))dt subj. to &(0) = z;, z(t;) = x5
0 wt) €U, ty >0
(6.1)
where the following assumptions hold

e fo:R"xR™ — Rand f: R"xR™ — R" are continuous and continuously
differentiable with respect to x.

e The final time t; is free. This means that it is a variable that must be
optimized.

It is important to note that it is no restriction to let the initial time be ¢; = 0.
The reason is that an autonomous system allows arbitrary time translation of its
solutions. In other words, if u(t) € U transfers z(0) = a; to x(t;) = zy, then
fi(t) = u(t —t;) transfers &(t;) = z; to Z(t; +tf) = z; and the trajectories are
related as #(t) = z(t — t;). Moreover, for the cost integral we have the relation

tp+ii ty
f fol@(), a(t))dt = j folw(t), u(t))dt.
t 0

71
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We will next follow Pontryagin and reformulate (6.1) by introducing an addi-
tional state variable

2o(t) = /0 fol(s), u(s))ds,

with initial condition 24(0) = 0. This implies that @p(t) = fo(z(t), u(t)). Now
define the extended state vector and the extended vector field as

To fo
zn fa

The initial extended state is & = [0 :Ef]T and the final extended state must
belong to the line # = R x {z;}. This shows that an equivalent formulation
of (6.1) is

&(t) = F(#(2), u(t))
J = minimize zo(ty) subj. to ¢ #(0) = %;, i(t;) € m =R x {4}
u(t) e U, t; 20

which is illustrated in Figure 6.1. Let us introduce the extended vector )\ =

[)\0 AL )\n]T, which satisfies the adjoint system
; — Ofi((t), u(t)
= —_— e ———————— A — A 4 .3
Ai(t) E:O o1, M(t) 1=0,1,...,n (6.3)

In particular, we have A, = 0, which shows X\o(t) = const. If we define the
Hamiltonian function

H($1 U, X) = S\Tf(m!u) = Z /\kfk(m: "U.) = /\Ofl]("’c) u‘) + ’\Tf(mau)
k=0

then we have

B(t) = Hx(m(t),u(t),;\(t)) = (), u(t)) (6.4)

X(t) = —Ha(a(t), u(t), A1) = —fia(t), u(t))TA(2)

This is the so called Hamiltonian system of differential equations. It is important
in the following Pontryagin minimum principle for problem (6.1).

Theorem 7 (PMP). Suppose (z*(t),u*(t),t}) is an optimal solution of (6.1), i.e.
it transfers x; to x; with minimum cost at the optimal transition time ;. Then
there exists a nonzero extended adjoint function X(-) such that
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T
Y | -
J*
Toi el
=7 5’2}'
J”
T Ty

Figure 6.1: The dashed line corresponds to the state trajectory z(t) and the solid
line corresponds to the extended state trajectory Z(t). The goal of the optimiza-
tion is to find a control such that the corresponding extended state trajectory
intersects the line 7 = R x {z} at a point with as low z; coordinate as possible.
The minimum z, coordinate corresponds to the optimal cost J*.

(i) A(®) = —Ha(a"(t), w*(2), A(t))
(i3) H(z*(t),u*(t), M(t)) = minyey H(z*(t),v, M(t)) = 0 for all t € [0,}]
(3) Ao(t) = const > 0
Remark 14. Note that
e the Hamiltonian function does not depend on .
e the adjoint equation is a linear differential equation.

Remark 15. In [22] and the classical references [23, 18] the sign of ) is changed
and the minimization in (7) is replaced by a maximization. This gives a completely
analogous result. Our sign convention is chosen in consistency with the results in
Chapter 2 and Chapter 4.

Remark 16. If we change the optimization problem (6.1) such that £y is fixed but
everything else remains the same then we obtain an identical theorem except that
condition (i) is replaced by

(i1) H(#*(t),u*(t), A(t)) = minyey H(E*(t),v, \(t)) = const for all t € [0,].
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where the constant can be any real number. This modification is easily seen from
the last step of the proof below.

Remark 17. The Ag coordinate did not appear in the PMP theorem in the previous
section. In most situations we will have Ay > 0 and then it is no restriction to
let Ao = 1. This follows since the adjoint equation is linear so we can multiply
it by any positive number. The cases when )\g = 0 are pathological and often
due to lack of controllability or other related problems. Note also that A\g = 0
means that the cost integral does not affect the criterion. For the most part of
the course we simply ignore the case when )y = 0.

Remark 18. Since we know that )\ is a constant, we often replace the extended
adjoint equation in (i) with

=200 e ), ()0 — L (w0, wr )N

In our examples we often assume )y = 1.

At) = —Hg(z*(t),u* (2), A(t)) =

Remark 19. The conditions are necessary conditions for stationarity and we can
use them to find candidates for optimality. We discuss this in more detail in
section 6.4

Before we embark on a discussion of the proof of Theorem 7 we consider an
example.

Example 19. We will solve the linear quadratic optimal control problem for the
rocket car in Chapter 1. The optimization problem is (note that ty is fixed in
this example)

z(t) = Az(t) + Bult)

tf
J* = minimize / u(t)?dt subj to
. 0 {:cm) = 25, 3(t7) =0

This problem was solved in the basic course [14] using completion of squares.
Here we solve it using PMP. The final time is fixed so we need to use Remark 16.
We start by minimizing the Hamiltonian with respect to u. The Hamiltonian
becomes
H(z,u,\) = u® + \T(Az + Bu),
(normalizing Ao = 1). We now have argmin, H (z,u, ) = argmin, {u? + AT (4z +
Bu)} = —2BT\. The adjoint equation is

At) = —ATA(t)

which has the solution A(t) = e~4"*A(0). The initial value A(0) can be determined
using the terminal condition for z. When u(t) = —1BTA(t) is substituted into
the state equation we get

Bt = g %BBTe"AT*A(O), 2(0) = o
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By the variation of constants formula we have

1 [t
z(ty) = eMizy — 3 f eAtr=2) BBT = A"5ds\(0)
0

1
= eAtrgy — SWitr, 0)e~ A" X(0) =0
where the reachability Grammian is
t
W(t5,0) = f " eAtr=9) p BT ATt g,
0

In our case the system is controllable and therefore W(ty,0) is positive definite
and thus invertible. We can solve for A(0), which gives

/\(0) = 2€Ath W(t_f, 0)_1€At-f To

This gives the optimal control
1
u(t) = —EBTe*ATtA(O) = —BTeA W (t,0) e o

and the optimal cost becomes (after some calculations)

ty 1 [
= f u(t)?dt = i f Mt)TBBT\(t)dt
0 0

= m?;eAth W (ts,0) e z,.

Proof of Theorem 7

We will in this section discuss the proof of Theorem 7. A quick look at the
proof in one of the references [23, 18, 22] may give the impression that it is very
complicated. However, it turns out that the ideas behind the proof are very
elegant and quite easy to understand. What makes things complicated is that
u(+) is allowed to have discontinuities since it is piecewise continuous. This will
mess things up quite a bit since we loose smoothness at the points of discontinuity.
Here we ignore all these technical details in order to highlight the main ideas. We
refer to [23] for the additional technical arguments.

First let us recall what we have set out to prove (Consider Figure 6.1): Among
the admissible controls, u*(:) is one that transfers £(0) = (0, ;) to a point on the
line m = R x {z;} with lowest possible xo coordinate. Show that the conditions
of Theorem 7 are necessary for (z*(-),u*(+),t}) to be optimal in this sense.

Step 1: Perturbation of optimal control and transition time: Suppose
(z*(-),u*(-),t}) is an optimal solution. We will make small variations in the
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optimal control w*(-) and the optimal transfer time t7. Any such change must
lead to a larger (or equal) value of the cost (i.e., an intersection of 7 at a larger
(or equal) zp coordinate).

Basic perturbation of control: First consider a small (in time) perturbation at
some time 7, where u*(+) is continuous.

u*(t), t<7—Ac
u(t) =< v, T—Ac Lt (6.5)
ut(t), t=2r

where v € U. Note here that only Ao is assumed to be small and v may be very
different from »*(7).

The question is how much such a perturbation can affect the cost xq(ts). Let
us first study the local effect of the perturbation. A first order approximation
gives

di(r) = 5(r) - #'(0) = [ [Flalt),v) - Fla" 0w )
= (fa*(7),0) - fl&" (1), w' (7)) Ao + o( o)

We will next show how this perturbation can be transported to the optimal end
point z*(t}) using the linearized dynamics.

Transportation of basic perturbation: We have seen that a perturbation of the
optimal control on the form (6.5) to first order corresponds to a change #(7) =
Z*(1) 4+ 6&(r) of the state vector at time 7, where

8%(1) = (f(z*(1),0) = F(a*(r),u"(7)))Ao.

We now want to show how this perturbation is transported to the optimal final
time ;. We can view 6%(r) as a perturbation in the initial condition at time
7. It then follows from Theorem 6 in Chapter 4 that 6Z(t}) = Z(t}) — F(t}) =
O(6%(7)). This motivates us to consider the linearized dynamics. A Taylor
expansion gives

0z (t) = 2(t) — &*(t) = f(a(t), u'(¥)) — F(=*(t),u*(t))
= fa(a*(t), u* ()05 (t) + 0(62(t)), t € [r,t}]

We have thus shown that to first order approximation, the perturbation is trans-
ported by the linear system

8z(t) = A@®)03(t), 8&(r) = (f(a*(r),v) — f(a*(r),u*(7))) Ao

where A(t) = fi(x*(t), u*(t)). Hence, we have 0%(t}) = @(t},7)0%(T), where @
is the transition matrix corresponding to A(t). Figure 6.2 illustrates how the
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o) (t5, 7)0%(7)
6 ()
J*
I -; R
7T B
ry T;

Figure 6.2: Transportation of the perturbation (more precisely, the first order
approximation) §%(7) to the final point using the linearized dynamics. The per-
turbations are illustrated as thick arrows.

perturbation 6% (7) is moved to a perturbation ®(t%,7)d%(r), which has its vertex
at the optimal point z*(t}).

Perturbation of the final time: We can perturb the final time by either extending
the optimal control to time t} + At (if At > 0)

fuww), tel
”@‘{M@Ltewé+Aﬂ

or by stopping earlier (if At < 0)
u(t) = u*(t; +At), te[0,t;+ Al

Hence, a perturbation of the final time to ¢} + At gives rise to the following
perturbation of the end point

+AL _

0 (t}) = B(tj+At)—3*(t}) = /t f(z(t),u(®))dt = f(z*(t}7),u" (t7)) At+o(At)
f

where At may be positive or negative.

Combined perturbation: Let us combine perturbations on the form above, see Fig-

ure 6.3. Each of the individual perturbations will contribute to the perturbation

at the end point in the way described above. The first order contribution at the

end point can then be obtained by adding up the individual contributions.
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ty ty+ AL

./

c
1l
\

Figure 6.3: A more general perturbation of u*(-). Here u*(-) is drawn in dashed
lines and the perturbed control is in solid line.

Let us assume that we perturb the control at times 0 < 7, < 7, < ... <
Tp-1 < Tp < t; and that the control value at each perturbation point is v, € U.
If we choose the intervals of perturbation to be I} = [1, — axAc, 73], where the
oy 2 0 are such that the intervals are disjoint then we get the perturbed control

Uk, tely, vwelU
u(t) = S u*(t), t¢&I,Ul[t t; + At]
u*(ty), tE [t} t;+ At]

and similarly if At < 0. It can be shown that all possible perturbed controls of
this type give rise to the following set of end point perturbations (follows from
superposition of the individual perturbations at point 7, and at the end point

).

P
K(t7) = {f(m*(t}),u*(t}))At+Z o ®(t;,71,)0%, : AtER; > 0; 73, € (0,¢7)
k=1

pis an integer, 33 = (f(2* (1), ) — F(2* (), u* (7)) Ao, v, € U}

This set is a convex cone i.e., if 21,2, € K(t}), then also f121 + Bz € K(t3) for
any f, 2 > 0. We will pictorially illustrate such cones as “ice cream cones” but
it should be understood that they can have quite different appearance in reality.

Step 2: Separating hyperplane at the endpoint: We have seen that the set
of end point perturbations is a convex cone K(t}) with vertex at Z*(t7) (i.e,
we consider the set K(t7) + £*(t;). Now consider the ray r = {zy : 2o <
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Figure 6.4: In the left hand side the ray r does not contain any points of the cone
K(t5). Then every admissible perturbation of the control and/or transition time
will give a trajectory #(-) with endpoint above the optimal point. In the right
hand side the cone K(t}) intersects the ray r and then it is possible to perturb
the control and/or the transition time such that the corresponding trajectory Z(-)
intersects the ray below *(t}). However, this contradicts the optimality of ()
so this case is impossible.

zj(t3)} x {zs}, which consists of all points below the optimal end point. It
is intuitively clear that this ray cannot contain any points of K(t}) + Z*(t}), be-
cause that would contradict optimality. It is possible to give a mathematical
proof of this but we just give a pictorial illustration of this fact in Figure 6.4.
Since the ray 7 and the cone K(t}) are both convex and without any common
points it follows that there exists a separating hyperplane. In other words, there
exists a nonzero vector a such that

a’z>0, VzeK(t})
T ok (6.6)
a’2<0, Vzer—-a(t}) = {(,0,..-,0): z < 0}

This is illustrated in Figure 6.5. It is important to note that the first coordinate of
a must be positive, i.e., ag > 0. This follows since otherwise the second condition
in (6.6) cannot hold.

Step 3: Proof of H(&*(t),u*(t), A(t)) = min,ey H(&*(t),v, A(t)): Let the end
condition for the adjoint differential equation be A7) = g, i.e.,

Mt) = —A®TA(E), Mt =a

where A(t) = fz(z*(t),u*(t)). Then we can easily show that AMt) = ®(t%,t) a.
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TP T,

T Z;

Figure 6.5: The perturbation cone K(t}7) has its vertex at the optimal point
x*(t}). The vector a is the normal of the separating hyperplane.

With this choice of ) we get

H(z* (), vs, A(1e)) — H (2" (), u*(7), A(me))
= ) [f(2" (m), ve) — F(2*(me), u* (7))
= a0 (t;, 7)[f (2" (m), ) — F(a*(n),w*(m))] = 0¥z > 0

since z = ®(t%, 7,)[f(x*(7x), v) — Fla*(m),u*(m))] € K(t}). This proves that
H(2"(2), w* (), A(t)) = min H(z"(t), v, \(2))

because v, € U and 74 € (0,t}) are arbitrary.

Note also that the condition Ay > 0 also holds since we have already concluded
that ap > 0. .
Step 4: Proof of H(z*(t),u*(t),A(t)) = 0 for t € [0,%* 31+ As a first step we
show that the condition holds at the endpoint, i.e., H(z* (t*) u*(t}), )\(t*))

To do this we notice that z = f(z*( P ut(ty)At € K(t}3), for all At. Hence, in
order for the separating hyperplane condltlon

= an(:c*(t*), u*(t}))At > 0

to hold for all At, we need o f(z* (t7),u*(t7)) = 0. In other words, the normal
to the hyperplane in Figure 6.5 must be perpendicular to f(z* (t3),u*(t3)). This
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gives,
H(x" (&), (£5), M(t5)) = Mep)T Fl@ (£7), v (¢7)) = a” F(2*(¢}), w' (£])) = 0.

The next step is to show why H (z*(t), u*(t), A(t)) must be a constant function
of time. This constant must of course be 0 since we just proved that this is the
value at t;. We only prove this for a special case when

1. u*(-) is continuously differentiable in a neighborhood around ¢ and it belongs
to the interior of U.

2. foand f are C? also with respect to u.

For this special case differentiation gives (we suppress the arguments for brevity)

d . oHT., O0HT: OHT Sops  pavah

S HE@ @), v (1), 1) = — 7+ — A+ — @' =—-NTz+ (@)=
where we used (6.4) and that H,(z*(t),u*(t), \()) = 0 (which corresponds to the
pointwise minimization). This shows that the Hamiltonian H(x*(t),u*(t), A(t))
is constant along the optimal trajectory in this special case. The proof is more
complicated in general and we refer to any of [23, 18, 22] for the details.

6.2 Optimal Control to a Manifold

We will in this section consider what happens with the optimality conditions in
Theorem 7 when the terminal state is required to belong to a manifold S;. An

(n — p)-dimensional smooth manifold in R™ is an intersection of p hypersurfaces
(each described by a set S = {z € R™: gy(z) = 0}):

g1(z)
S;={z€R":G(x) =0} where G(z) =
9p()

where the gradients Vgi(z) are linearly independent for all points on the mani-
fold'. This is equivalent to requiring that the functional matrix

8g1(z) 8g1(z)
w1 Tt 8mn
Gi(z) = ;
Ogp(z) 9gp(x)
8z e BTn

11t is actually enough that the gradients are linearly independent in a neighborhood around
the optimal terminal point on Sy.
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Ty

Figure 6.6: The left figure shows the manifold S;, = {z € R? : 2, — &% = 1},
The right figure shows the manifold Sgp = {x € R* : 2, = 0, z3 = 0}, which
is the xp-axis. It can be viewed as the intersection of the manifolds (planes)
Sy ={zeR*:2;=0}and S3 = {z € R®: 23 =0}.

has rank p for all z € ;.
Two examples of manifolds are given in Figure 6.6. The left figure shows the
manifold S, = {z € R?: g(z) = 0}, where g(z) = z, — 22. In this case we have

Vg(z) = _?xl # 0 for all z € S, which means that the rank condition on the

functional matrix is satisfied. The right part of Figure 6.6 shows the manifold
Sp={z € R®: g1(z) = 0, ga(z) = 0}, where g;(z) = z; and g2(z) = 23. The
functional matrix becomes

dg1(z) OBq(z) Ogi(z) 100
oz Oz O —
902(z) Bmlx) daalx) | = [0 0 1]

az dza dz3

which has full rank (rank=2).
The optimal control problem is formulated as

iy .’E(t) = f(m(t),u(t))
J* = minimize ] fo(z(t),u(t))dt subj. to z2(0) =z, z(tf) € Sy (6.7)
¢ u(t) €U, t >0

where everything is defined as in the previous section. The new problem differs
from the old one in (6.1) only in that we now need to determine the optimal
position at the terminal manifold Sy. It turns out that the only change to the
optimality conditions in Theorem 7 is that the boundary value of the adjoint
vector must be perpendicular to the manifold S;. In order to show that this
is true we take the same approach as before and introduce the extended state
vector & and the extended vector field f, see equation (6.2). We also introduce
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Figure 6.7: The state trajectory z(t) is the dashed curve and the corresponding
extended state trajectory Z(t) is the solid curve. The goal of the optimization is to
find an admissible control such that the corresponding extended state trajectory
intersects the manifold (in this case it is a surface) Sy = R x Sy at a point with
as low zg coordinate as possible. The minimum xz, coordinate corresponds to the
optimal cost J*. The manifold S; on the zi,...z,-plane is drawn in thick solid
line.

an extended terminal state manifold
S;=RxSy={#ecR:z= [0 mT]T;G(:c) =0}

Then the optimal control problem can equivalently be stated as follows: Find
an admissible control such that the eztended state vector is transfered from Z; =
(0, 2;) to a point on the extended manifold Sy with as low xo coordinate as possible,
see Figure 6.7.

Recall the idea behind the proof of Theorem 7 in the previous section. We
perturbed the optimal control and the optimal transition time t}, which gave
rise to a perturbation cone KC(t}) at the optimal end point #*(¢}7). We could then
argue that there must be a hyperplane that separates the perturbation cone K(t})
from terminal points with lower values of the zg-coordinate than the optimal. The
final value j\(t}) of the extended adjoint vector was the normal to the hyperplane?.
Transportation of the hyperplane to points corresponding to times in the interval
0,¢7] was then used to derive the conditions on the Hamiltonian function. The
situation is similar now but the hyperplane must be tangential to the “curve”
{z5(t7)} x Sy at the optimal point, see Figure 6.8. An arbitrary tangent vector of

2The hyperplane is not necessarily unique.
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{z5(t7)} x Sf

Tn

- ———

T

Figure 6.8: Define the surface @ = {zo : 2o < 2§(t})} x S; of points on the
extended terminal manifold with lower zy coordinate than the optimal point
z*(t}). In order for &*(t7) to be the optimal terminal point, it is necessary that
the perturbation cone K(t}) does intersect the interior of £ (locally around the
optimal point). It can be proven that this implies the existence of a separating
hyperplane that must be tangential to the boundary of 2, i.e., tangential to the
“curve” {zj(t})} x Sy. For a careful proof, see [23].
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{z5(t})} x Sy at £*(t}) has the form ¥ = [0 ‘UT]T, where v € R" is perpendicular
to all gradients Vgi(z*(t})), ie.,

g1 (=~ (¢7)) 991 (=" (£3))
az1 nisre Oy
! : v=0
39p($'(*?)) 8gp(z” (7))
azn e dzn

Hence, for a hyperplane to be tangential to the “curve” {z§(t})} x Sy we need its
normal E\(t}) to be perpendicular to 7, i.e., ﬁTi(t}) = 0. This condition implies
that the following transversality condition must hold

dg1 (=" (7)) 8g1(z"(t7))
dz1 e 8Ty
/\(t’})TU =0 for all v such that : : v=0 (6.8)
Agp(=™(t})) dgp(z*(t}))
dxy e don

This transversality condition will be denoted )\(t}) 1 Sf. It can equivalently
be stated as A(t}) = Gw(w*(t}))Tv =Y _1 v Vgr(z*(t7)), for some appropriate
vector v € RP. We can now summarize the optimality conditions for (6.7)
Theorem 8. Suppose (z*(-),u*(:),t}) is an optimal solution of (6.7), i.e. it
transfers x; to Sy with minimum cost at the optimal transition time t}. Then
there exists a nonzero extended adjoint function such that

(i) A(t) = —Ha(*(2), u* (), A(t))

(i) H(z*(t),u*(t), A(t)) = minyey H(2*(t),v,A(t)) =0 for all t € [0,¢}]
(#42) Xo(t) = const >0
(iv) Mt}) L Sy

Proof. We have already discussed the main idea behind the proof above. For the
complete details, see [23]. O

We illustrate with an example. This example also shows that the “time”-
variable can mean other things than time.

Example 20. Determine the shape of the curve of minimum length that connects
a point z; in the plane with a smooth curve (manifold) Sy = {z € R*: g(z) = 0},
see Figure 6.9. Let s denote the arc length. The optimal control problem can
then be stated

cos(0(s))

422 — sin(f(s))

CE(O) = &Ly, m(sf) € Sf
6 € [0,2n], sy 20

dzy
ds

minimizes; subj. to
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z(s5)

T

Figure 6.9: We want to determine the minimum length curve that connects the
point z; with the curve Sy.

In other words, we want to minimize the length s; of a curve that connects the
point z; with the curve S;. The dynamical equations just determine the direction
of the curve at each s € [0, 5¢].

The Hamiltonian is H(z,8,X) = Ao + A;cos(d) + Mg sin(f). This gives the
adjoint equation

% — —H, (2,0,0)=0 = \(s)=\
% = —Hp(z,6,0) =0 = g(s) =\

i.e., all the adjoint variables are constant. The optimality condition (i) becomes
min H (x(s), 0(s), (s)) = do — 4/ (A2)? + (13)?

and the corresponding optimal direction is constant and such that

[nots] =~ ] oo

Le., the vector field is aligned with the adjoint variable. This in turn implies that

dzy _ sin(6) _ A (6.9)
dry cos(f) X0
which shows that the the slope of the the optimal joining curve is constant. Hence,
we are looking for a straight line of shortest length between the initial point z;
and the curve S;.
The transversality condition will tell us even more about this straight line.
Indeed, it becomes

Moy + v, =0 for all v such that 9oy (2(83))01 + goy (2(53))v2 = 0
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T

Figure 6.10: There are two candidates for optimality. PMP does not distinguish
between them.

which is equivalent to

N, (2" (57)) — A20m: (2" (s7)) = 0,

From (6.9) it now follows that the optimal straight line from z; to Sy must be
orthogonal to Sj:

.’E;(S?) — T2 gmz(m*(s}))

zi(sh) —z1 o (2*(5}))
We have thus proven that the curve of minimum length that joins z; with Sy

must be a straight line orthogonal to S;. There are in general several candidate
optimal solutions as illustrated in Figure 6.10.

Relationship with Dynamic Programming (Optional)

Let us introduce the value function® (optimal cost-to-go function)

J*(z) = fo(-"ﬂ*(s u*(s))ds

where (z*(-),u*(+),t}) is an optimal solution to (6.7) for the case when we start
at position (t,z), i.e., £*(t) = x. It satisfies the boundary condition J*(z) = 0
for z € Sf.

An optimal isocost surface consist of initial states (in R") with the same
optimal cost. The extended state trajectories starting from an optimal isocost
surface and terminating at the extended terminal manifold S; = Sy x R makes

3J* is time independent since tf — ¢ is a variable which is optimized. The optimization of
ty — t is independent of the particular starting time ¢ since fo and f are independent of time
(autonomous).
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up another surface, the so called level surface?. Figure 6.11 illustrates an optimal
isocost surface and the corresponding level surface. All extended states on the
level surface end up at a terminal state with the same z, coordinate (cost). Let
us define a function ¥ on the level surface as ¥(%) = x5 + J*(z). This is a
constant function, since V(%) = zp + J*(2) = J*(z;) for every point & = (zg, z)
on the surface, see Figure 6.11. Note that this relation is nothing but the dynamic
programming equation

7 (@) =min{ [ fta(o)uds + 70}

since zy(t) = f; fo(z(s), u(s)).

Assume that J* is continuously differentiable and consider an optimal solution
(&*(-),u*(+)) in the extended state space. Then since, ¥(-) is a constant function
on the level surface we get

V(@ (1)) = V(@ (1)) F(a (t), w (1))

= fo@* (), () + e a* () £ (& (8), 2 (1) = O

On the other hand, from the optimality of the states on the level surface it also
follows that no admissible control will move the extended state below this surface.
Hence, we obtain

*

min {fo(m*(t),u) + 2 o) s, W} =0 (6.10)

If we compare with (i) in Theorem 8 then we see that the adjoint variables
correspond to the gradient of the value function A(t) = V.J*(z*(t)): and® \g = 1.
Note that with 2*(t) = z (6.10) is the HIBE.

In order to clearly see the similarities and differences between PMP and HIBE
we illustrate how these methods are used in an application of the type in this
section. For simplicity assume that we have a nonpathological case when \g > 0,
ie., we can take A\g = 1. We take the following steps

Step 1 Define the Hamiltonian H(z,u,\) = fo(z,u) + XT f(z, u)
Step 2 Let fi(x, X) = argmin, ., H (z, u, \)
Step 3a In dynamic programming we now need to solve the HIBE

V(z) =0 when =z €S

A derivation of PMP using isocost surfaces and level surfaces is done in [13].
5The reason for Mg = 1 is that, in Figure 6.11, the level surface is not vertical when inter-
secting the extended manifold Sy. For such cases we can surely put Mg = 1.
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Ty

T

Figure 6.11: The “curve” S* is the optimal isocost surface. It contains states in
the 71 . . . Z, plane with the same optimal cost as z;. The level surface, ¥, consists
of states in the extended state space with the same terminal zo coordinate (cost)
as the points on the optimal isocost surface S*. In particular, its intersection
with the z; ...z, plane is the optimal isocost surface. The figure indicates the
relation J*(z;) = x}(t) + J*(z*(t)), t € [0,t}], for an optimal trajectory on the
level surface.

e This corresponds to computing the entire isocost surface.
e The optimal feedback control is u(z) = fi(z, VV (2)).

Step 3b In PMP we solve the two point boundary value problem

.’E(t) = Hl(x(t)’ ﬁ(m(t),)\(t)),/\(t)), 1!2(0) = Zo, m(tf) € Sf
A(t) = —Ha(a(t), B(z(t), AM(2)), A(1),  Altr) L Sy

e This corresponds to computing a trajectory on the isocost surface.

e The optimal control function is u(t) = fi(xz(t), A(t))

6.3 Some Generalizations
We will now discuss generalizations of the Pontryagin principle to cases where:

1. The initial point belongs to a smooth manifold.



90 CHAPTER 6. PMP: GENERAL RESULTS

2. There is a terminal cost term.

3. The system is nonautonomous.

We will only indicate how the derivation can be done by using the already estab-
lished results. We refer to [23, 13] for further details.

Autonomous Systems

We consider the optimization problem

ty .’E(t) = f(:c(t),u(t))
minimize ¢(z(ty)) +/ fo(z(t),u(t))dt subj. to { z(0) = S;, z(ts) € S
s u(t) €U, t; >0
(6.11)
where ¢ is assumed to be continuously differentiable, S; is a smooth manifold, and
everything else is as before. In order to derive necessary optimality conditions
we transform the problem so that the previous results can be applied. Introduce

additional control and state variables, u,,,; and Tpny1, respectively. Then the
following optimization problem is equivalent to (6.11)

minimize /(; / [fo(z(t), u(t)) + tmy1(t)]dt
(4(t) = f(a(2), u(t))

En1(t) = Ump1

subj. to < :1:(0) € 5;, IE(tf) € .Sf,

Zn41(0) = 0, Zppa(ts) = d(2(ty))
\u(t) €U, Up1 €R, t; >0

This follows since j;f Um+1(t)dt = Tni1(ty) = (2(t4)). The initial condition gives
rise to an initial transversality condition on the adjoint variable, see [23, 13]. In
order to derive the remaining optimality conditions we apply Theorem 8. The
Hamiltonian becomes

-~ x U 3 T

H ([.I‘ J ) [ ] ) [ :l) = }‘D(f()(m} u) - 'u'm+l) + A f(.’L‘,‘U.) + An+1um+1

n+1 Um+1 Ant1
= H(z,u,A) + (Ao + Any1)thmss

where H(z,u,\) = Aofo(z,u) + \Tf (z,u). Pointwise minimization gives rise to
the condition

min [}({ ol ] ’[ u } | [ A D _ Jminuey H(2*,4,3), Apr ==X
ST R Top1] " [Umi1] " [Ana —090, Ans1 # =X

=0
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Hence, we conclude that A\, ;1 = —Xp and

min H(z*, u,A) = 0.

uel

The adjoint equation becomes

50=8 ([ 29] [ %) [29]) = e, 50)

n+1 u:n+1(t)

i) = ~Haws ([(t()t)] ! [u:(t()t)] ! [Aif?() )D =0

The last equation is consistent with the fact that A\ny1 = —Ao = const. It remains
to derive the boundary value of the adjoint function. Condition (v) in Theorem 8

becomes
D) wae={lar ) e (fem]) =}
¢ ([x]) - [xnf(-‘%(x)] |

The condition can equivalently be written
* T * *
[A(tf)] [ v }zo, v[ v ] 5.8, [ Glelty)) 0] [ § ]: [0]
Ant1]  [Vntr Un+1 =V¢(z*(t3))" 1] [Vt 0
@)\(t})T'u — XoV(z*(ts)Tv =0, Ga(z*(t7))v =0
SA(t}) — AoVo(z*(t7)) L Sf

where

where we used that A\,y; = —)g. An equivalent formulation of this transversality
condition is

A(t5) = X Ve(a" (t7)) + Gala(t}) v
= XoVe(a*(t})) + Y v Var(z*(¢}))
k=1

for some vector v € RP.
To summarize we have the following optimality conditions for problem (6.11):
Note: We IGNORE the pathological case and USE Ag = 1.

PMP: Autonomous Systems: Define the Hamiltonian
H(z,u, ) = fo(z,u) + M f(z,u)

Assume that (z*(t),u*(t),t}) is an optimal solution to (6.11). Then there exists
an adjoint function A(+) that satisfies the following conditions
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(4) A(t) = —Hy(2* (t), u*(t), A(t))

(i4) H(x*(t),u*(t), \(t)) = minyey H(z*(2), v, \(t) = 0 for all £ € [0, 23]
(ii3) A(0) L S
(1) \t}) - Vo(a*(5;) L 5

Special Case 1: It is reasonable to assume that the terminal cost and the termi-

nal manifold involve two disjoint set of states. For example, ¢(z) = ¢(zpy1, ..., Zs)
and gix(z) = gi(1,...,2,), k = 1,...,p. Then the transversality condition re-
duces to
9(=(t3))
A'p+1(tf 5:1;,;,+1
o= (6.12)
Anlt5) 00(a(c7))
dwy,
and the remaining variables (A;(t}), ..., Ap(t})) remain undetermined.

Special Case 2: If S; = {z;} (a given pomt) then there is no constraint on A(0).
Special Case 3: If S = R" then A(t;) = Vé(z*(t3)).

Special Case 4: If S; = R" and ¢ = 0 then A(t) = 0.

Special Case 5: If S; = {zs} (a given point) and ¢ = 0 then there is no con-
straint on A(ts).

Special Case 6: If the final time is fixed then (i) is replaced by H (2*(t), u*(t), A()) =
minyey H(z*(t), v, A(t)) = const for all t € [0,1,].

Nonautonomous systems

We consider the optimization problem

tr
minimize (g, z(t;)) + /t fo(t, z(t), u(t))dt

2(t) = f(t, 2(t), u(t)) (6.13)
subj. to < x(t;) = z;, z(ts) € S¢(ty)
u(t) €U, ty > t;
where ¢(t,z) is assumed to be continuously differentiable with respect to both

arguments, fo(t,z,u) and f(t,z,u) are continuously differentiable with respect
to ¢ and z, and the terminal manifold may depend on time:

gl(tn :1’.!)
Sf(t) ={reR": G(t,z) =0} where G(t,z) =
9(t, T)
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It is assumed that the functional matrix

8g1(z) 9gi1(z) dg1(z)
dz e dzp at

dgp(z) 8gp(z) 8gp(z)
8y e Oz ot

has full rank.

In order to derive necessary optimality conditions we transform the problem
so that the previous results can be applied. The trick is now to introduce an
additional state z,,;(t) that corresponds to the time variable. The following
optimization problem is equivalent to (6.13)

minimize (znrs(ty), 2(6)) + [ folews(2), 20), u(e)

(5(t) = f(@nia(t), 2(t), u(t))
j7'1';-&-1(1;) =1

subj. to { z(t;) = @i, G(zn4a(ty),z(ts)) =0
Tni1(ts) = i, Tapalty) =t5

\u(t) el,t; 20

If we use the result in the previous subsection then we get a result similar to
the previous one except that the constancy property of the Hamiltonian now is
replaced by a more complex condition. See, for example, [23, 13] for more details
about the derivation.

We get the following optimality conditions for problem (6.13):
Note: We IGNORE the pathological case and USE Ay = 1.

PMP: Nonautonomous Systems: Define the Hamiltonian function
H(t,z,u,\) = folt, z,u) + X f(t,z,u)

Assume that (z*(t),u*(t),t}) is an optimal solution to (6.13). Then there exists
an adjoint function A(-) that satisfies the following conditions

(6) A(t) = —Ha(t, 2*(t), u*(2), M)

(1) H*(t) = minyey H(t, z*(t), v, A(t)) satisfies

) = B — [ D (s,0%(s) ' (s), A(e))ds, 1€ [ 5]
i (6.14)

P
0
(1) = =3 n e 15,0°(65)) — o8, (1)
k=1
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(#1) (M2t}) — ¢a(tF, *(t*) L Sy(t}), which means that there must exist a vector
v= [1/1 e up] such that

Ogi 0D u aion
ZVL (t},z z*(t3)) + a—(t},m (7))
T
k=1
Special Case: If the terminal time is fixed then we can remove the time depen-
dence of ¢ and S, i.e., the g, are now only functions of the state. Conditions

(2) and (44) are then replaced by

(i4) H*(t) = minew H(t,2(2), v, \(£)) satisfies
H*(8) = H'(t)) f O (5 2%(s), u*(s), A(s))ds, t € [tirt]
(##) Mt;) — Vle*(ts)) L Sy or equivalently
Ats) = Zuk 2 (0 (t7)) + 520" (11))

. 5y
for some suitable vector v = [ul o vp] «

6.4 How to Use PMP

A professional way to address optimal control problems is to start investigating
the vector field and the cost function to determine if

e it is possible to conclude that there must exist an optimal solution,

e the optimal solution is unique.
The existence and uniqueness questions are addressed in more advanced books,
like [12, 23].

The next step (in our case it would be the first) is to use PMP. We take the
following steps (we consider problem (6.13) and assume Ao = 1)

1. Define the Hamiltonian: H(t,z,u, ) = fo(t, z,u) + AT f(t, z,u)

2. Perform pointwise minimization: fi(t,z,\) = argmin,cy H(t, 2, u, \), which
means that a candidate optimal control is u*(t) = pu(t, z(t), )\(t))
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3. Solve the Two Point Boundary Value Problem (TPBVP)

A(®) = —Holt, a(t), e, 20, MOV @), Mtg) — gty alt)) L Sy(ty)
(6) = Halt,2(0), it 2(2), MO) MO, a(6) =35 5(t1) € Sty

One of the difficulties when solving a TPBVP is to find appropriate bound-
ary conditions for z and \. In order to obtain conditions that help us find
candidates for the optimal transition time we also use (6.14) above.

4. Compare the candidate solutions obtained using PMP.

The TPBVP must often be solved numerically using, for example, the shooting
method explained in Chapter 10 or the book [4]
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Chapter 7

Examples

We consider some applications of optimal control.

7.1 The Optimal Storage Problem

In this example we try to find an optimal storage strategy.

* st 4 vt : .’Ii(t) = u(t)? 3:(0) =0
J* = minimize /(; (u(t)e™ + cz(t))dt subj. to {x(tf) _ A 0<ult) <M

where the final time is assumed fixed. The variables denote (all are non-negative
quantities)

x stock size
u production rate
r production cost growth rate
c storage cost
The Hamiltonian is
H(t,,u, \) = Aofolt, z,u) + M f(t,z,u) = docz + u(Xoe™ + A1)
The adjoint equation for A; becomes

OH (t,z,u, )

oz N

which gives the solution \;(t) = —Xget+ A (0). Optimality condition (ii) requires
that

A]_ = —/\oc

H(t, z(t), u(t), 5\(1&)) = oggnMH(m(t),u,i(t)) ;
= Mocz(t) + Og?Mu - o(t) (7.1)

97
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Figure 7.1: The figure shows the three possible shapes of the switching function
o(t). We have three possible switching sequences for the control a) {0, M, 0} or
b) {M,0}, or ¢) {0}, where the third is impossible by the endpoint condition.

where the switching function is o(t) = (Xoe™ — Mget + A(0)). Consider first
the case when Ay = 0. This means that A;(t) = A;(0) # 0 since otherwise
A(t) = (Xo(0), A1(0)) = 0, which is not allowed. However, then (7.1) reduces to
H(z(t),u(t), () = ming<y<pr M1(0)u and we must consider two cases

L. M(0) > 0: Then mingcy<pr A1(0)u = 0 and u(t) = 0, which is impossible
since then the end condition z(¢;) = A will be violated.

2. A(0) < 0: Then mingcucar M (0)u = X(0)M, and wu(t) = M. This is
only possible if t; = A/M, because otherwise we have either z(t;) < A or
.’L'(tf) > A.

We conclude that if t; = A/M then the unique control is u(t) = M (it is the only
control that brings us to the required end point z(t;) = A). For all other t; we
must have A\g > 0 and then without loss of generality \g = 1.

With Ao = 1 it is easy to see that the optimum in (7.1) is achieved by

M, o(t) <0
u(t) = { arbitrary in [0,¢7], o(t)=0 (7.2)
0, o(t) >0

In our case o(t) = e™ — ct + A;(0) becomes zero only at most at two distinctive
points, where the value of u is irrelevant for the final cost. See Figure 7.1 for
an illustration of the possible switching sequences for the control. The situation
would be different if o(t) could have vanished on a nonzero time interval. This is
called the singular case and then it requires more work to determine the value of
the control.

We have thus seen that the optimal control must be on the form

0, 0<t<ty
ut) =M, i <t<ty
0, t2<t<ty
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Figure 7.2: The cost J(%;) is plotted as a function of t; for the cases when r = 0.15,
r = 0.25, and r = 0.35, respectively. We see that for low production cost growth
it is optimal to produce as late as possible (left figure where r = 0.15) and for
high production cost growth it is optimal to produce as early as possible (right
figure where r = 0.35).

where #; and t, are variables to be determined. In order for z(t;) = A, we need

ty—t, = A/M. This shows that t; > A/M in order for the problem to be feasible.
The problem have now been reduced to the determination of a suitable ¢; €

[0,2; — A/M] such that the cost is minimized. For a given t; we have the cost

t1+A/M ty
J(t) = / [Me™ + c(t — t1)]dt + / cAdt
t1 t1+AfM
M 42
= T(e‘r(t1+A/M) —e™) + ;Mz + cA(ty —t, — A/M)

The optimal cost becomes

J*=  min  J(t1)
0<ti<ts—A/M

which is a scalar optimization problem that can be addressed using basic methods
from calculus. In Figure 7.2 we plot J(t;) whent; =10, c=1,M =1,and A =5
for the case when r = 0.15, 7 = 0.25 and r = 0.35.

7.2 Dubins’ Car

Consider the shortest path problem for Dubins’ car, which was introduced in
Example 2 in Chapter 1. We showed that the shortest path problem was equiv-
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alent to a minimum time problem. If we, without loss of generality, assume that
the initial point is (2(0),(0),6(0)) = (0,0, 0), then the minimum path problem
corresponds to the optimal control problem

&(t) = veos(8(t)), z(0) =0, z(T) =z
§(t) = vsin(8(t)), y(0) =0, y(T) =5
6(t) = w(t), 6(0) =0, §(T) =48

W) <v/R, T >0

(7.3)

minimize 7" subj. to

where the terminal point is denoted (Z, 7, 8).

We use PMP and see how far this brings us. We first note that the cost
function can be written 7' = j;)T dt, i.e., fo(z,y,0,w) = 1. It is then easy to see
that the Hamiltonian becomes

H((z,y,6),w,X) = Ao+ \wcos(d) + Mwsin(6) + \aw

The adjoint equations become

M(t) =0 M(t) =2
Aa(t) =0 = A(t) =N
As(t) = A\ (t)vsin(8(t)) — Az (t)v cos(8(t)) A3(t) = A3(0) + Ady(t) — Az (t)

i.e., A1(t) and Ag(t) are constant. The last equation (for \3(t)) follows by inte-
grating the two equations in the constraint set of (7.3).

Our next step is to find a candidate controller by using (#) in Theorem 7. We
start with the pointwise minimization

B <0
argminy, <,/ rH((z,9,0),w,A) = argming, <, pAsw = 77,  A3=0
—5 A3>0

We have a Bang-Bang solution unless A3(t) = 0 on a nonzero time interval. The
case when A3(t) = 0 on a nonzero time interval is called singular. To understand
what the control must be in the singular case we use (i1) in Theorem 7. We have

Jnin, H((2,9,0),0,3) = do + Mo cos(6(t)) + usin(0(t)) ~ 2As(6)] = 0

fort € [0, T*], where T* denotes the minimum time. When A3(t) = 0 on a nonzero
time interval, I C [0,7™], this becomes

Mvcos(0(t)) + ANusin(0(t)) = —Xg, tel.
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This can only hold if 6(t) is constant on I, which means that w(t) = 0 on I. We
conclude that the optimal control must be

%, Az(t) <0
w(t)=1¢0,  A3(t) =0 (on a nonzero time interval)
_%a A3(t) >0

and each of these cases corresponds to the following trajectory piece

1. w(t) = % corresponds to a left turn with minimum turning radius R, i.e., we
get a circular arc of radius R. We denote this trajectory segment Iy, where
L is a number representing the time extent of the segment (or equivalently
the length of the segment).

2. w(t) = 0 corresponds to a straight line segment. Indeed, w(t) = 0 when
A3(t) = 0, so the expression for A3(t) gives

Ay(t) — X3z(t) = —23(0).

This is a line with direction (A}, AJ). We denote this trajectory segment s,
where again L is a number representing the time extent of the segment (or
equivalently the length of the segment).

3. w(t) = —% corresponds to a right turn with minimum turning radius R,
i.e., we get a circular arc of radius R. We denote this trajectory segment
L+

We have now learnt that the optimal path (if it exists) consists of a combination
of at most three types of trajectory segments, “turn right” (r), “go straight” (s),
and “turn left” ({). However, we still don’t know how these pieces should be
ordered, how many pieces there should be, and how “long” they should be. We
would immediately get an answer to these questions if we knew the correct ini-
tial conditions A(0) = (XY, A3, A3(0)). Numerical optimization can give candidate
solutions by recursively updating A(0) until all the conditions of PMP hold. How-
ever, PMP generally gives several candidates as is illustrated in Figure 7.3. We
can always compare the extremals provided in order to see which one is shortest.
It would, however, be more efficient to have additional rules for what the optimal
extremal must look like. Fortunately, Sussman and Tang has provided such rules
in [27]. There they show that

1. There exists an optimal solution to (7.3).
2. The optimal solution must be either of the following types

e B,S,B,, where each B is either r or [, and a,c € [0, 2E), b > 0.
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Figure 7.3: We want to find the shortest path for Dubins’ car from the configura-
tion (0,0,0) to the configuration (Z, 7, §) = (R, R,m/2). In the figure we show two
paths that both satisfy the conditions of PMP. The solid line l«a is the shortest

path. The dashed path 82rT3xr82R I8 just an extremal (statlonary solution) for
the optimization problem (7 3)
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Figure 7.4: The shortest path for Dubins’ car from the configuration (0,0, 0) to
the configuration (3.3R, 1.57R,0). The optimal path is of the type lsr.

Figure 7.5: The shortest path for Dubins’ car from the configuration (0,0, 0) to
the configuration (0,0, 7). The path is of the type irl.

e B,ByB,, where each B is either r or [, ie., this is either a rylyr,
sequence of trajectory pieces or a [,ryl. sequence of trajectory pieces.
The time parameters are restricted by b € (%&,28) min{a,c} <
b— =& and max{a,c} < b.

v

Note that a, b, ¢ > 0, and that one or two of them can be zero. For example,
8y, Ta, and sl are admissible.

Two examples of minimal paths for Dubins’ car are given in Figures 7.4 and 7.5.
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Chapter 8

Infinite Horizon Optimal Control

It is common in applications that a system is designed to operate around a certain
operating condition for long time periods. The transient behavior is then not the
main design criterion but rather the ability of the system to maintain its position
in the event of disturbances. We illustrate by an example

Example 21. Consider the inverted pendulum in Figure 8.1. The differential
equation of this system is

mlf = mgsin(f) + u

where 6 is the angle between the rod and the vertical axis and u is the torque at
the pivot point. Further, m is the mass of the bob and ! denotes the length of
the rod. We assume that m! = 1 and mg = 1. If we let z; = @ and z; = 6 then
the state space representation of the inverted pendulum becomes

[a‘sl] = [ 7 ] — f(z,u) (8.1

&g sin(z;) + u

This system has an equilibrium point (stationary point) at (z,u) = (0,0). This
means that if we bring the bob to rest at the upraised position (6,8) = (0, 0) then
the pendulum stays in this upraised position. However, the slightest disturbance
from this equilibrium position will make the pendulum fall down. We say that
the equilibrium point is unstable.

From the basic course on automatic control we know that feedback control can
help stabilize the pendulum in its upraised position. The design of such feedback
laws are for simplicity often based on the linearized dynamics. Linearization
of (8.1) around z = 0 gives

B 0[]+ [ um ae e 20 52
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Figure 8.1: The inverted pendulum

which is a valid linear approximation of (8.1) in a neighborhood of z = 0. Note,
in particular that it is an unstable system since the eigenvalues of A are +1.

If we apply the state feedback law u = — Lz, where L = [2 2] then the closed
loop system becomes & = (A — BL)z, where

0 1
A-BL= [_1 _2}

This closed loop system matrix is stable since it has a double eigenvalue at —1.
The practical implication is that this state feedback controller will stabilize the
the unstable equilibrium 2 = 0 of the nonlinear system (8.1).

In this chapter we will learn that infinite horizon linear quadratic optimal
control problems on the form

minimize ] ("Qz+ ru®)dt subject to &= Az + Bu, z(0) =z, (8.3)
0

result in state feedback solutions that not only are stabilizing but also have good
robustness properties.

The primary design criterion in control of a system over an infinite time hori-
zon is stability. We will first formally state the stability definition used in this
chapter before we discuss an optimal control problem that ensures stability as
well as some additional performance,

Definition 3. Consider an autonomous system

& = fa). (8.4)

A point z* in the state space is called an equilibrium point of (8.4) if f(z*) = 0.
It has the property that if the system starts in z* then it remains in z* at all
future time instances.

We will without any loss of generality only consider equilibrium points at the
origin z* = 0 (otherwise we make the change of variables z = x — z* and consider
the system 2 = f(z + z*)).
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Definition 4. Assume f(0) = 0. The equilibrium point z = 0 of z = f(z) is
globally asymptotically stable if

(4) for any € > 0, there exists d(¢) > 0 such that

z@)| <d(e) = llz@®l<e VE20

(i) for any 2(0) € R™ the solution converges to zero, lim¢ 0 2(t) = 0.

Let us now consider the optimal control problem

:i::f(m,u)

z(0) = zo, u(t) € U(x) (8-9)

minimize/ folz,u)dt subject to {
0

where fy and f are locally Lipschitz continuous function (this is the case if fo
and f are continuously differentiable functions).

We assume without loss of generality that we want to control the system to
an equilibrium point at (z,u) = (0,0). This means that we assume f(0,0) = 0.
In order to obtain a finite cost we further need to assume fy(0,0) = 0. There is
additional complication compared to the previous theory in that we now have to
ensure that the optimal solution is asymptotically stable. To do this, we need to
define positive definiteness of functions and state some additional assumptions
on the vector field and the cost function in (8.5).

Definition 5. A function V : R® — R.is called positive semi-definite if V(0) =0
and V(z) > 0 for all z € R™ If it satisfies the stronger condition V(z) > 0
for all z # 0 then it is called positive definite. It is called radially unbounded if
V(z) — oo when ||z|| — oo.

Example 22. A quadratic form V(z) = 2T Pz, where P = PT, is positive
definite (semi-definite) if P > 0 (P > 0), i.e., if all eigenvalues of P are positive
(non-negative). It is radially unbounded if P > 0.

Assumption 3. We assume that f; is positive semi-definite and positive definite
in u, i.e., fo(z,u) >0, V(z,u) € R™*™ and fo(z,u) > 0 when u # 0.

Assumption 4. We will assume that the artificial output h(z) = fo(z,0) of the
system & = f(z,0) is observable in the sense that h(z(t)) = 0 for all ¢ > 0 implies
that z(t) =0 for all t > 0.

Before we consider an example that illustrates the last assumption we recall
the definition of observability and controllability from the basic course.



108 CHAPTER 8. INFINITE HORIZON OPTIMAL CONTROL

Definition 6. Consider the linear system

T = Az + Bu

Y Ca (8.6)

The system is observable if (we sometimes say the pair (C, A) is observable)

C
CA

CAn—l

has rank n, where n is the dimension of the state vector z. The system is con-
trollable if ((B, A) is controllable)

[B AB ... A™1B]

has rank n. The system in (8.6) has a minimal state space realization if (C, A) is
observable and (A4, B) is controllable.

Example 23. Consider the linear quadratic control problem

min / (zTQz + uT Ru)dt subject to {m =4 B

0 z(0) = g
Le., fo(z,u) = 27Qz +uT Ru and f(x,u) = Az + Bu. In order for Assumption 3
to hold we need () > 0 and R > 0.

Let us assume we have the factorization @ = CTC. Such a factorization is
always possible to find when @ = QT > 0. We will now show that if (C, A) is
observable then Assumption 4 holds.

First notice that the statement fy(z,0) = 0 for all solutions to & = f(z,0)
now means Cz(t) = 0 for all solutions to & = Axz. Since z(t) = etz this means
that y(t) = Cetzg = 0 for all £ > 0 and 2, € R". Hence, y(0) = §(0) = ... =
y"~1(0) = 0, which gives

C
CA
. X = 0, Vxy € R"

CAn—l

Since (C, A) is observable this implies 2o = 0, which in turn means that z(t) = 0
for all t > 0.
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Let us now define the optimal cost-to-go function (value function) correspond-
ing to (8.5)

J*(xg) = m(i%lf Jo(z,u)dt.
u() Jo

The value function is independent of time since the dynamics and cost function
of (8.5) both are independent of time.

Theorem 9. Suppose Assumption 3 and Assumption 4 hold and
(i) V € C' is positive definite, radially unbounded, and satisfies the (infinite
horizon) HIBE

ﬂg{ﬁuun+%gwﬁﬂnm}=o (8.7

(i) ula) = sxgmin,ey {fole,0) + (@) f(z,)}.
Then

(a) V(z) = J*(z)

(b) u= p(z) is an optimal globally asymptotically stabilizing feedback control.

Proof. Sketch: We first prove that u(t) = p(z(t)) is globally stabilizing 2. Inte-
gration of HIBE gives

V(zo) < V(z(t)) +f0 fo(z(s),u(s))ds,

with equality if u(t) = p(z(t)). Since V(z(t)) > 0, we have

fo Fol@(s), (@(s)))ds = V(z0) — V(2(2)) < V (zo). (8.8)

Hence, since fo(z, u(z)) > 0 it follows that fo(z(t), u(z(t))) — 0 as t — 0o, be-
cause otherwise the integral would not be bounded, which violates (8.8). More-
over, since fy(x,u) is positive definite in u we get the stronger condition that
z(t) = L:={z € R": fo(z,0) =0}, i.e., u(z(t)) — 0. However, this means that
in the limit we have h(z(t)) = fo(z(t),0) = 0, where #(t) = f(z(t),0). By the
observability assumption it follows that L = {0}, i.e., z(t) = 0 as t — oo.

!We assume there exists an optimal solution otherwise min should be replaced by inf. We
make this assumption at several places in this chapter.
2In Remark 20 we discuss a more careful proof of stability. There we exploit that Viz(t)) =

limy 0 ftT Jo(z(s), p(z(s)))ds is well defined because the integral converges due to (8.8).
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We have now proved that u = p(z) is stabilizing in the sense that the closed
loop state vector converges to zero. We will next see that it also gives the minimal
cost. From (8.8) we have

T
fim [ fole(t), u(®))dt > V (z0) — Jim V(a(T)) = V(o)
0 o0

T—oo

for any stabilizing control function u(-) (we used z(T) — 0 = V(z(T)) — 0).
Since we have equality in (8.8) when u = p(z), we get

V(o) = [ " fola(t), pla(e))d < j " fola(t), u())de

which proves optimality. O

Remark 20. The above proof is not complete since we only proved global con-
vergence of the state vector to zero, which is not as strong as global asymptotic
stability. The reader who knows Lyapunov theory and in particular the LaSalle
invariance principle can obtain the stability conclusions by exploiting the conver-
gence we already proved. Indeed, we can use the value function to define a radially
unbounded Lyapunov function that satisfies all the conditions of LaSalle’s invari-
ance principle [11]. We use that the system is time invariant, which means that
if we start at time ¢ at any state x then the closed loop solution still converges
to zero. Consider

z2= f(z,,u.(z)), z(t) =T

and let
V) = [ folan(z))ds
¢
This Lyapunov function satisfies
(e) V(z) > 0and |V(z)| = oo when ||z|| = oo.

(8) V(z) = —fo(=, u(x)) < 0

(c) 8 ={zr € R": V(z) = 0} = {z € R™ : fo(z,0) = 0}. Due to the
observability assumption the only invariant subset of S is {0}.

Hence, by Corollary 3.2 in [11] it follows that the origin is globally asymptotically
stable.

We next consider the special case of linear quadratic optimal control
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Theorem 10. Consider
J*(zp) =min / [T Qz + u” Ru|dt
0

¢ = Az + Bu

bject to
R {18(0) =Ty

where Q = CTC and R > 0. We assume that (C, A) is observable and that (A, B)
is controllable. Then

(a) J*(zo) = z& Pzo, where P is the unique positive definite solution to the
Algebraic Riccati Equation (ARE)

ATP+PA+Q=PBR'BTP. (8.9)

(b) p(x) = —R'BT Pz is the optimal, stabilizing, feedback control.

Remark 21. Conclusion (b) in particular means that the closed loop system matrix
A — BR™1BT P has all eigenvalues in the open left half plane.

Proof. Let us try V(z) = 27 Pz in the HIBE (8.7). We get

min {:cTQ:E + uTRu + 22T P(Az + Bu)} = [,u,(:z;) = —R_lBTpm]
= 27Qz + zTPBR'BPz + 22" P(Ar — BR™'BP)z
=aT(ATP+PA+Q—PBR'B"P)z =0
where we used the ARE in the last equality. Hence, V(z) = 27 Pz is positive
definite, radially unbounded, and satisfies the HIBE. Since the observability as-
sumption (Assumption 4) holds it follows from Theorem 9 that v = —R'BTPx
is the optimal stabilizing control.

The existence of a unique positive definite solution to the ARE can be proven
as in [14] using controllability of (A, B) and observability of (C, A). O

We will next show that the linear quadratic regulator in Theorem 10 satisfies
certain robustness properties. The following inequality derived from the ARE is
of key importance

Proposition 7. Let L = R~*BTP, where P is a solution to the ARE in (8.9).
Then the transfer function

G(s)=L(sI — A)™'B
satisfies the inequality
(I + G(jw))*R(I + G(jw)) = R (8.10)
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Proof. From the ARE we have
ATP+PA+Q-PBR'BTP =
& (—jwl — AT)P+ P(jwl — A)+ PBR'BTP = (.

If we multiply the last expression by BT (—jwl — AT)~! on the left and by (jwI —
A)7'B on the right, then we get

BTP(jwl — A)™'B + BT (—jwl — AT)"1PB+
BY(—jwI—AT) " PBR™ BT P(jwI-A)"'B = BT (—jwI—AT)'Q(jwl—A)"'B
which is equivalent to
RG(jw) + G(jw)* R+ G(jw)*RG(jw) = BT (—jwl — AT)'QjwI — A)"'B >0

since BTP = RL. The right hand inequality follows since Q > 0. If we add the
term R on both sides of the inequality then we get

(I +G(jw))* BRI + Gjw)) > R
which is the desired inequality. O

We will next give an important interpretation of the inequality (8.10). Let
us use the control u = —Lxz + v, where L = R™'BT P, and where P satisfies the
ARE in (8.9). The closed loop system

&= (A— BL)z + Bu

it (8.11)

has the block diagram representation in the upper diagram in Figure 8.2. Let us
consider the scalar case when R = 1. The inequality in (8.10) then reduces to

11+ G(jw)| > 1.
This means that the Nyquist curve of G(s) = L(sI — A)"1B stays outside the
circle centered at s = —1 and with radius 1. The interpretation of this is that
G(s) always is far away from the critical point s = —1. This is illustrated for

the case when A is stable in the middle part of Figure 8.2 (remember that for
this case the closed loop system is stable as long as the Nyquist curve does not
encircle® s = —1). Another interpretation of this robustness property is that

3If A is unstable then the Nyquist diagram interpretation must be slightly modified. If A has
p eigenvalues in the right half plane then the Nyquist curve of ¢ must encircle the critical point
p times in anticlockwise direction. The robustness interpretation is still valid since G (jw) stays
outside the unit disc in the middle diagram of Figure 8.2, which implies that the encirclement
condition remains satisfied when the transfer function is perturbed as long as |A(jw)G(jw)| < 1.
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the perturbed system in the lower part of Figure 8.2 remains stable as long as
|A(jw)G(jw)| < 1, where A(s) is an arbitrary stable transfer function. To see
this, we need to show that (14 A(jw))G(jw) does not encircle s = —1 (again we
assume that A is stable). We have

11+ (14 A(jw))G(jw)| 2 |1+ G(jw)| = |A(jw)G(jw)| 2 1 - |A(jw)G(Gw)| > 0,
which proves the claim.

Example 24. Now consider the inverted pendulum in the introductory example.
If we solve the optimization problem (8.3) with @ = I, and r = 1 then the ARE
has the following positive definite solution

p_[2+V2 1+V2
T14+v2 142

and the optimal feedback control law is u = — Lz, where L = BTP = [1 +4/2 14 \/5]

The closed loop system matrix

s B [—[\]/i _1i\/§]

has eigenvalues in —1 and —v/2. The Nyquist curve of G(s) = L(s] — A)™'B =

1
(1+2) ;+ 1 is given in Figure 8.3. We see that it encircles the point s = —1
once, which is necessary in order to obtain closed loop stability since A has one
unstable pole at s = 1. Moreover, it lies outside the circle centered at s = —1

with radius 1, which gives the robustness property.
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— (s — A" B—| L

Re

Figure 8.2: The upper figure shows a block diagram representation of the closed
loop system in (8.11). The middle diagram illustrates that the Nyquist curve
of G(s) = L(sI — A)™'B lies outside the unit ball centered at s = —1. This is
due to the inequality (8.10). Another interpretation of inequality (8. 10) is that
the system in the lower diagram remains stable for all stable perturbations that
satisfy |A(jw)G(jw)| < 1.
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Imaginary Axls
To: ¥

Figure 8.3: Nyquist curve corresponding to G(s) = L(sI — A)™'B = (1 +
ﬁ)% is drawn in solid line. In dashed line we have the circle centered
at s = —1 and with radius 1.
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Chapter 9

Second Order Variations

We will in this chapter derive the second order variation of optimal control prob-
lems. This will be used to derive sufficient conditions for local minima. In the
next chapter we use the second variation to derive Newton’s algorithm for nu-
merical computation of the optimal controller. For simplicity, we only consider
optimization problems with fixed terminal time and no control constraint (we
have for convenience assumed tg = 0):

& = f(t,(t), u(t))

minimizegb(:v(t;))-I-_/;ffo(t,iﬂ(t)au(t))dt subj to {m(O) e

(9.1)

where ¢, fo, and f are twice continuously differentiable with respect to z and u.
Define the Lagrange function (compare with Chapter 5)

Wu(-), A(+) = o(z(ts)) + fo J![H(t,-'fi(fi),u(t),)~(t)) — A(t)Ti(t)]dt (9.2)
where
H(t,z,u,\) = folt, z,u) + N f(t, 7, u)

and where A(+) is the adjoint vector.

Let us make a Taylor series expansion up to second order around an admis-
sible solution (z°(-),u%(+)). Our experience from previous chapters suggests the
following choice for the adjoint variable

)\(t) = _Hw(t: mo(tLuO(t):A(t)): A(tf) = ¢m(1"0(tf))
Use of similar calculations as in Chapter 5 then gives the second order variation

(A = MO+ [ HO(O u(tdt-+ (506t a0t )+

[0 [0 2] o] ) + o 0

117
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where
Hg(t) = HU(t: mu(t)s U’O(t)’ A(t))
Hp,(t) = Hayo(t,2°(2), (), \(t))

and similarly for HY, (t), H2,(t), and HZ,(t). The second term in (9.3) corresponds
to the “gradient of the Lagrangian”. The gradient is a linear operator, which acts
on a function du(-) as follows

Ly
VI(O(), X)) (6u(-)) = f HO(t) Su(t)dt

The third term corresponds to the “Hessian of the Lagrangian”. The Hessian is
a quadratic operator defined as follows

DU(u’ (), M(:)(02(), 6u()) = 62(t7)" buo (@ (t1))d(2s)+

[ [ (B0 B =04 (o

It should not come as a surprise that we have the following result, which is
analogous to the second order sufficient conditions for optimality in nonlinear
programming?, see Section 4.3

Proposition 8. Suppose (z*(-),u*(-)), and \(:) are such that
() 2*(2) = f(t,2*(t), u(t)), a*(0) = a0,

(iia) M(t) = —Ha(t, 2 (2), u*(2), \(t)), Alts) = du(a*(ty))

(iib) Hy(t,z*(t),u*(t), \t)) =0

(tiia) dua(z*(t5)) 20

Hy,(t) Hy(t)
and similarly for H: , HY, and HX .

Then (z*(-),u*(+)) is a local minimum of (9.1).

Remark 22. Conditions (#ia) and (i) correspond to Vi(u*(-), \(:)) = 0. Condi-
tions (#4a) and (4ib) make the Hessian positive definite on the subspace of all
solutions to the linearized dynamics

Si(t) = folt, *(2), u* (£))62(2) + fult, 2* (), u*(1))0ult), 62(0)=0. (9.5)

This positive definiteness condition can be relaxed significantly.

(i4ib) HZ(t) > 0 and [Hiw(t) H;u(*)] > 0, where H2,(£) = Ho(t, 2 (2), u*(£), A(2))

! As in Proposition 6 in Chapter 5, we need the linearization of the dynamics at the optimal
solution to be controllable,
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Example 25. Consider the special case when the dynamics is linear

mind(e(t) + [ 100626 + Bt u(@)let subi to {2(Z)i$i?,+8”(”
(9.6)
Then condition (##ib) reduces to
2
Q) = 226,22 0) 20
R(H) = S2(6,°(0) > 0

2

Hence, if the cost function in (9.6) locally around the extremal solution (z*(-), u*(-))
appears as an LQ optimal control problem with the usual assumptions on @ and
R, then the extremal is a local minimum.
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Chapter 10

Computational Algorithms

We will in this chapter present the five common methods for numerical solution
of optimal control problems, viz.

Discretization: This is perhaps the most straightforward method. The idea is
to discretize the continuous time dynamics and cost function. The optimal
control problem then becomes a constrained nonlinear program.

Boundary condition iteration (Shooting): The idea behind the shooting
method is to use numerical iteration to find the correct values of the unspec-
ified initial/terminal conditions in the two point boundary value problem
associated with PMP.

First order gradient methods: The idea behind these algorithms is to suc-
cessively improve the control signal until the gradient of the cost function
becomes sufficiently small.

Newton’s method: The second order approximation of the Lagrangian of the
cost function is minimized subject to the linearized dynamics and linearized
boundary conditions. This approach is completely analogous to Newton’s
method in nonlinear programming.

Consistent approximations: The original optimal control problem is con-
verted into a nonlinear program by using finite dimensional approximations
of the control function (and sometimes also the state function). Different
basis functions that are used to approximate the control give rise to different
algorithms.

121
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We will focus the discussion around the optimization problems

iy & = f(t,z(t), u(t))
minimize ¢(z(t5)) +./0. Jo(t, z(t), u(t))dt subj. to < z(0) = zo, z(tf) € Sy
uw€R™
(10.1)

where
a(z)
Sy ={z e R": G(z) =0}, G(z) = o,
9p(x)
and all functions are twice continuously differentiable with respect to 2 and w.
Extension of the algorithins to the case of control variable constraints and free
terminal time will be remarked on where we find it appropriate.

10.1 Discretization Methods

Discretization is perhaps the first approach one would think of to solve & contin-
uous time optimal control problem. The most basic discretization method is to
use a piecewise constant approximation of the control signal. If we use N samples
and define h = t;/N then the discretized control becomes

ut)=uy, kh<t<(k+1)h, k=0,1,....N—1

If we make a similar discretization of the state and use the forward Euler ap-
proximation of the differential operator, then we get the following approximation
to (10.1)

N-1
minimize ¢(zy) + Z hfo(kh, 2y, us) subj. to :n.rc+.1 = zi + hf(kh, zy, up),
k=0 T is given, G(zy) =0

(10.2)

This is a constrained nonlinear program. Indeed, if we define the parameter
vector, objective function, and constraint function as

y=[ug uf ... uf, o ... a%]
N-1

F(y) = d(an) + Y hfolkh, i, u)
k=0

1 — o — hf(0, Zo, up)
G(y) = oy — Ty-1 — hE((NV = 1)h, TN-1,UN-1)
G(CEN)
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then (10.2) becomes
minimize F(y) subject to G(y) =0 (10.3)

This optimization problem can be solved by any standard method for constrained
nonlinear programming, e.g., Newton’s method, quasi-Newton methods, penalty
methods, or conjugate gradient methods. See, e.g., [15]. Some characteristics of
and comments on the method are:

(+) There exist many good software packages for nonlinear optimization.

(+) There is a lot of structure in the optimization problem (10.2) and there are
many ways to exploit it:

— A direct application of the first order necessary conditions for optimal-
ity (see Chapter 3) on (10.2) gives “Pontryagin minimum principle”
for discrete time systems, see [4]. It is then often possible to eliminate
the controller parameters from the optimization.

— The objective and constraint derivatives of (10.3) will be sparse and
have a block structure. This can be exploited to make the solvers
efficient.

(+) More sophisticated discretizations can be used. For example, Runge-Kutta
formulas can be used to solve the differential equations.

(—) There are many variables and constraints in (10.3).

(=) The solution of the discretized problem may not converge to the solution of
the original continuous time problem when the discretization is made finer
and finer.

(=) We loose physical insight that we may have in the continuous time formu-
lation.

10.2 Boundary condition iteration (Shooting)

This approach is based on successive improvements of the unspecified initial /terminal
condition of the two point boundary value problem obtained from PMP. We as-
sume for simplicity that G and ¢ depend on disjoint sets of state variables

e G(z)=G(xy,...,x,) (same p as number of components in g)

o () =P(Bpsiy o-x 1)
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This simplifies the transversality condition in PMP, see (6.12). With
H(t,z,u,\) = fo(t,z,u) + AT f(t, z,u)
the two point boundary value problem becomes

&= Hy(t,z,u,)), z(0)=mo, G(z(t;))=0

Ap(z(t
_ doaalty)] | Zoel
A= —H,(t,z,u, ), : = :
Mlty) | |20t

subject to H,(t,z,u, A) = 0, which at each time instant determines u as a func-
tion of (¢,z,1). The problem is to find an initial condition for A(-) such that
(x(ts), Alty)) = 0, where

-g1($1(tf), R }mp(tf))_

I 4 ,....:vpt
et ) = | o o) (104)

Ozpi1

An(ty) — 265000

The shooting method uses the following algorithm to update A(0).
Step 1 Make an initial guess A(0) = X,
Step 2 Integrate the system
&(t) = Ha(t, (), u(t), A(t), 2(0) ==
() = —Ho(t, 2(t), u(t), A(t),  A(0) = Xo
forward in time. Here u(-) is chosen such that H,(t,z(t), u(t), \(t)) = 0.

(10.5)

Step 3 Compute p(ts) = pu(z(ts), Mty))

-1
Step 4 Update Ao := Ao+ 6)g, where d)g = —a [%‘t-;—\((to—f))] p(ts). Here the tran-
sition matriz Oults) transfers a perturbation in A(0) into a perturbation

aA(0)
in p(ty), ie., op(ty) = %‘L;((%')) 0A(0). The parameter « is a step length.

Repeat steps 2 to 4 until |u(ts)| becomes sufficiently small.
Apty)
OA(0)

The transition matrix

can be computed in either of the following ways
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Numerical differentiation: Make n additional integrations, each with a slightly
perturbed value of one of the components of A(0). The difference between
the two values of u(ts) gives a column in the transition matrix.

Linearization: By linearizing the system (10.5) and the function u(z, A) in (10.4)
we can compute the transition matrix after an integration of a linear Hamil-
ton system, see the appendix to this chapter. This method gives better
numerical accuracy than the numerical differentiation approach.

Some advantages and disadvantages of the shooting method are
(+) Conceptually simple. It was used to launch satellites in the 1950s.

(+) Control constraints are easy to deal with. The only modification is that
in step 2 we must compute the control pointwise from the optimization
problem min, ey H (¢, z(t), u(t), A(t)).

(=) It can be crucial to find a good initial estimate of A(0).

(=) Integration of the system in (10.5) may be severely unstable. Indeed, the
linearization of (10.5) in (10.12) is a linear Hamilton system. We know from
Section 5.1 that such systems always have unstable modes. The transition
matrix may therefore be ill conditioned.

Shooting methods are described in detail in [4].

10.3 Gradient Methods

The idea behind the gradient methods is to iteratively update the control signal
in the direction of the negative gradient of the cost. We will only explain the
gradient methods for the special case when there is no terminal constraint, i.e.,
the constraint z(t;) € Sy is removed. More general cases are treated in [4].

As gradient we use

where H is the Hamiltonian, z(+) is the state trajectory, and A(+) is the solution
to the adjoint equation. From the previous chapter we know that this is the
gradient of the Lagrangian {(u(-), A(-)) introduced in (9.2). It can be proven that
this is the correct gradient of the cost function as long as A(-) satisfies the adjoint
equation, [16].

The gradient algorithm becomes

Step 1 Guess u(t), to £t <ty
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Step 2 Integrate the system equation #(t) = f(t,z(t),u(t)), £(0) = zo in the
forward direction.

Step 3 Integrate the adjoint equation A(t) = —Hy(t, 2(t), u(t), A(t)), Mt;) =
¢z(z(tf)) in the backward direction.

Step 4 Update u(t) := u(t) — aH,(t, z(t), u(t), \(t)), where a is the step length.

Repeat steps 2 to 4 until

/ ¥ |t 2(2), u(t), A0t
0

is sufficiently small. This means that the control is iterated until the conditions
of PMP are satisfied.
Some characteristics of the gradient method

(+) It gives good improvement in the first iterations

(+) Stability is generally improved compared to the shooting method since the
integration of (-) and () is performed in the stable direction.

(+) Control constraints can be taken into account by projecting onto the control
constraint set.

(+) It was used to solve a large number of aeronautical problems in the 1960s.

(=) Convergence tends to be slow.

10.4 Newton’s Method

Newton’s method in nonlinear programming is equivalent to solving a quadratic
optimization problem at each iteration. The quadratic optimization problem is
obtained by using the second order Taylor expansion of the Lagrangian as cost
function and the first order Taylor expansion of the constraint function as a linear
constraint in the optimization. The idea is completely analogous with Newton’s
method for nonlinear programming, which was presented in Section 4.3.

We will only consider the simplified case when the terminal condition z(t;) €
Sy is removed from (10.1). More general cases are treated in [20].

We use the Lagrangian defined in (9.2) when deriving the quadratic optimal
control problem that must be solved in each iteration of Newton,s method. The
second order Taylor expansion of the Lagrangian is given in (9.3) and the lin-
earized constraint is given in (9.5). It follows that the quadratic optimal control
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problem becomes

t 52" [Hew Huu] [62
T 1 3 T TT TU
minimize 6z(t ;)" Yo (x(ts))0z(ts) +/'; (ZHu du + [51;] [Huw Hw] [(5%] dt
subject to 6z = fy0z + fudu, 6z(0) =0 (10.6)
where the functions are evaluated at the current iteration point
Heo(t) = Heo(t, z(t), u(t), A(t))

and so on. The solution to this optimization problem can be obtained by solving
one Riccati equation and one linear differential equation in a similar way as in
the tracking example from the exercise.

P+PA+ATP+Q=(PB+S)RPB+S)T, Plty) = tuolz(ts)) (10.7)
i+ ATqg— (PB+S)R (BT + 1), qlty)=0 '

where

A(t) = fa(t,x(t),ult)), B(t)= fult,z(t), u(t))
Q(t) = Has(t, x(t), u(t), A(t))
S(t) = Hou(t, z(t), u(t), A(t))
R(t) = Huﬂ(tax(t)7u(t): ’\(t))
T(t) = Hu(tam(t)?u(t): A(t))
Newton’s algorithm becomes

Step 1 Guess u(t), 0 <t <ty

Step 2 Integrate the system equation Z(t) = f(t,z(t),u(t)), =(0) = o in the
forward direction.

Step 3 Integrate the adjoint equation A(t) = —Ha(t,z(t), u(t), \(t)), A(ts) =
¢=(z(t5)) in the backward direction.

Step 4 Solve for P(-) and g(-) in (10.7)
Step 5 Update, using the feedback law
Unew -— Uold — aR_l[(BTP + ST)(wnew - 3"'crlcil) 4 (T + BT(I)]

where a € (0,1) is a step length parameter (should be equal to one in a
proper Newton’s method).

Repeat steps 2 to 5 until || Hy(t, z(t), u(t), A())|| is sufficiently small. Some char-
acteristics of the method are
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(+) Fast convergence
(+) Solid theoretical justification

(=) Good initial guess is needed. Can be achieved by using a gradient method
initially.

(=) Each iteration is computationally quite expensive,

10.5 Consistent Approximations

In consistent approximation methods the control and /or the state variables are
approximated by a finite sum of basis functions. This makes the approximated
optimal control problem a finite dimensional nonlinear optimization problem that
can be solved using standard methods. The method has similarities with the
discretization approach that was discussed previously but there are also significant
differences. Particularly in the way the gradients are computed.

The following approximation methods can be used

Approximation by piecewise polynomials: The simplest case is when the
control is approximated by a piecewise constant function. Then the control
becomes

'U.(tl].t) =M, tE€ [tk—latk)'l te [0! tf]
for k =1,..., N, where the y;, € R™ are parameters to be optimized and
the t;, are the “sampling times”. The notation u(t|u) means that the control
is parametrized by the vector u = [pf 71— ,u%]T, As N gets larger
and larger we get better and better approximation capabilities.

More generally, we can use various spline functions to approximate the
control function. For example, we could use

N N | Br(t)pr,
ultly) =Y mBit) =" | » t€[0,t]

k=1 | Bie(t) s,
where p, € R™ and By(t) is a scalar spline function.

Approximation by orthogonal functions: It is very common to use an
orthogonal basis for the approximation. In this case we let

N N | or(t)
b=l =1 | o (t) e,
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where i, € R™ and the ¢(+) are the (scalar) basis functions. The orthog-
onality of the basis means that we have the relations

ts _ ks "7‘:.7
/ %m%Mﬁ—{Qi%j

If we use the basis {(}$2, to approximate a given control u(t) then the
Nt order approximation is obtained by letting the coefficients in (10.8) be
obtained as

S n(tua(t)dt

i = (10.9)

fOT cpk(tjum(t)dt

Common choices of basis are Fourier series, Chebyshev series, Legendre
series, and Walsh series.

Let us now consider how the optimization problem will look like when we approx-
imate the control with the expansion

N
u(tlp) = Y mpr(t)
k=1

where
T

p=[pf 45 ... sy
are the parameters to be optimized. For each parameter vector p, the state
function z(+) will be completely defined by the differential equation

(tlp) = f(t,2(tlm), p),  2(0) = =0
where f(t,z,p) = f(t,z,u(t|p)). If we define
folt, , 1) = fo(t, =, u(t|p))
then the optimal control problem (10.1) can be formulated as
minimize F(x) subject to G(p) =0 (10.10)

where

.ﬂm=¢wmmn+£“ﬁmmmmMﬂ
G(4) = Claltyl))
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It can be solved using standard algorithms for nonlinear programming. One
important aspect is that the gradients of F and G can be computed using the
adjoint system as follows

~

OF () T (0fs of
o fo (a(t,m(tlu),#) + B—#(t,w(tlu),#)i")\r(tlﬂ)) dt,

8G(u) _ [T (of
7R —fﬂ (E(t, fﬂ(ﬂ#):ﬂ)T)‘Q(ﬂﬂ)) dt

where
o(t) = =25 0,00l A 0), Art) = 22 oty )
3o(8) = =S 1,061, 250, Nolt) = 2 ulty )
and where

Hr(t,z, 1)) = folt,z, p) + M7 f (¢, 2, )
Hg(t,z, 1, )\) = ’\Tf(t: z, }J‘)

The computation of the above integrals must be performed numerically. Some of
the characteristics of the method are

(+) Solid theoretical justification

(+) There are several professional software packages developed based on the
consistent approximation ideas:

— Riots, which was developed at UC Berkeley, see [24, 25].

— Miser3, which was developed at University of Western Australia, see [8].

A good survey of consistent approximation methods are given in [17].

10.6 Appendix

Oplty)
OA(0)
tem (10.5). Linearization of the system gives (where we omit the arguments for
brevity)

We will see how to compute the transition matrix

by linearizing the sys-

0% = Hy0x + Hy,0u

; (10.11)
06X = —Hypbx — Hpp\6X — H,,0u
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and a linearization of the constraint H, = 0 gives Hyz0z + HuadM + H,,0u = 0.
If H,, is invertible then we can solve for du = —H N (Hyg0z+ Hypnd ). If we plug

this into (10.11) we get
)i -R 1|6

R ——
H

where
A= Hlm = HAuH;JHum

R = HAHH;JHU,\
Q = Hmm = H:EUH'(:JH‘MCB

Let ® be the transition matrix corresponding to the time-varying linear system
in (10.12). Then

] = lonterd Sateny) lovol

where the zero in the right vector is due to the constraint 2(0) = zo is fixed. We
also have

suatp o) = [eEU) e (e | [ise)

10m-px(n-p) —oa(2(tr)) Om-r)xp In-p)x(n-p)], SA(ty)
M
where the derivatives are evaluated as
991 da1 9% il
dr; ' Ozp 9zpi10Tpe1 7" Ozpi10mn
dgp 9gp __ 9% 0%
8r, ~°° Omp 8zndzrpi1 et OTnTn

Hence, if we combine these two differentials we get

oulty) _ [‘1’12(%’,0)] _

ox0) 7 | Paalts,0)
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