Formula-sheet at the exam in SF2863, December 2009

No calculator at the exam!

If events happen according to a Poisson process with rate λ , τ denotes the time between two consecutive events, and X(T) denotes the number of events on the time interval [0,T], then

$$P(\tau \le t) = 1 - e^{-\lambda t}, \ P(X(T) = \ell) = \frac{(\lambda T)^{\ell}}{\ell!} e^{-\lambda T}, \ E[\tau] = 1/\lambda, \ E[X(T)] = \lambda T.$$

Markov chain in discrete time.

P = the matrix with elements $p_{ij} = P(X_{n+1} = j \mid X_n = i)$.

 $\mathbf{p}^{(n)} = \text{the row vector with components } p_j^{(n)} = P(X_n = j). \text{ Then } \mathbf{p}^{(n+1)} = \mathbf{p}^{(n)} \mathbf{P}.$ The row vector π defines a stationary distribution if $\pi = \pi \mathbf{P}$, $\sum_j \pi_j = 1$ and $\pi_j \geq 0$.

Markov chain in continuous time (also called Markov process with discrete state space).

 $\mathbf{P}(h)$ the matrix with elements $p_{ij}(h) = P(X(t+h) = j \mid X(t) = i)$.

 $\mathbf{p}(t) = \text{the row vector with components } p_j(t) = P(X(t) = j). \text{ Then } \mathbf{p}(t+h) = \mathbf{p}(t)\mathbf{P}(h).$

Assumption: $p_{ij}(h) = q_{ij}h + o(h)$ if $j \neq i$, while

 $p_{ii}(h) = 1 + q_{ii}h + o(h) = 1 - q_ih + o(h)$, where $q_i = -q_{ii} = \sum_{j \neq i} q_{ij}$.

Thus, $\mathbf{P}(h) \approx \mathbf{I} + h \mathbf{Q}$ and $(\mathbf{p}(t+h) - \mathbf{p}(t))/h \approx \mathbf{p}(t)\mathbf{Q}$ for small h > 0.

The row vector π defines a stationary distribution if $\pi \mathbf{Q} = \mathbf{0}$, $\sum_{j} \pi_{j} = 1$ and $\pi_{j} \geq 0$.

The system $\pi \mathbf{Q} = \mathbf{0}$ can be written $\sum_{i \neq j} \pi_i q_{ij} + \pi_j q_{jj} = 0$, for all j, or $\pi_j \sum_{k \neq j} q_{jk} = \sum_{i \neq j} \pi_i q_{ij}$ ("jumps out from state j = jumps into state j").

Some quantities and relations in queueing theory (where P_n corresponds to π_n above):

$$L = \sum_{n=0}^{\infty} n P_n, \ L_q = \sum_{n=s}^{\infty} (n-s) P_n, \ \bar{\lambda} = \sum_{n=0}^{\infty} \lambda_n P_n, \ L = \bar{\lambda} W, \ L_q = \bar{\lambda} W_q.$$

$$M/M/1: \ \rho = \lambda/\mu < 1, \ P_0 = 1 - \rho, \ P_n = \rho^n P_0, \ L = \frac{\rho}{1-\rho}.$$

$$M/M/1$$
: $\rho = \lambda/\mu < 1$, $P_0 = 1 - \rho$, $P_n = \rho^n P_0$, $L = \frac{\rho}{1 - \rho}$

M/M/2: $\lambda_n = \lambda$ for $n \ge 0$, $\mu_1 = \mu$, $\mu_n = 2\mu$ for $n \ge 2$, $\rho = \lambda/(2\mu) < 1$,

$$P_0 = \frac{1-\rho}{1+\rho}$$
, $P_n = 2\rho^n P_0$ for $n \ge 1$, $L = \frac{2\rho}{1-\rho^2}$.

Jackson queueing networks.

Calculate $\lambda_1, \ldots, \lambda_m$ from $\lambda_i = a_i + \sum_i \lambda_i p_{ij}$. Check $\lambda_i < s_i \mu_i$.

Analyze each service facility to obtain $P(N_i = n_i)$.

Then $P(N_1 = n_1, \dots, N_m = n_m) = \prod_j P(N_j = n_j)$.

 W_1, \ldots, W_m can be obtained from $W_i = V_i + \sum_j p_{ij} W_j$, where $V_i = L_i/\lambda_i$.

Some deterministic inventory models.

EOQ with shortage not permitted: Minimize $\frac{Kd}{O} + cd + \frac{hQ}{2}$.

$$C_i = \min_j \{ C_i^{(j)} \mid i \le j \le n \}.$$
 $C_i^{(j)} = C_{j+1} + K + h(r_{i+1} + 2r_{i+2} + \dots + (j-i)r_j).$

Some stochastic inventory models.

$$C(S) = c S + p E[(\xi - S)^{+}] + h E[(S - \xi)^{+}].$$

If ξ is a continuous non-negative random variable then

$$E[(\xi - S)^+] = \int_S^\infty (t - S) f_{\xi}(t) dt$$
, $E[(S - \xi)^+] = \int_0^S (S - t) f_{\xi}(t) dt$, and $C'(S) = c + p(F_{\xi}(S) - 1) + hF_{\xi}(S)$.

If ξ is a non-negative integer-valued random variable then S is integer and

$$\mathrm{E}[(\xi-S)^+] = \sum_{j=S}^{\infty} (j-S)p_{\xi}(j), \ \mathrm{E}[(S-\xi)^+] = \sum_{j=0}^{S} (S-j)p_{\xi}(j),$$

and $C(S+1) - C(S) = c + p(F_{\xi}(S)-1) + hF_{\xi}(S).$

No calculator at the exam!

Marginal allocation for generating efficient solutions to the pair (f, g), where f and g are integer-convex separable functions, f decreasing and g increasing in the non-negative integer variables x_1, \ldots, x_n .

Generate a table in which the j:th column contains the quotients

 $-\Delta f_j(0)/\Delta g_j(0), -\Delta f_j(1)/\Delta g_j(1), -\Delta f_j(2)/\Delta g_j(2), \dots$

Let all the quotients in the table be uncanceled.

Initiate the variables to their smallest feasible values and repeat the following: Let ℓ be the number of the column with the largest uncanceled quotient. Cancel this quotient, and increase the ℓ :th variable x_{ℓ} by one.

Finite horizon MDP recursion (discounting if $0 < \alpha < 1$, no discounting if $\alpha = 1$):

$$V_i^{(n)} = \min_{k} \{ C_{ik} + \alpha \sum_{j} p_{ij}(k) V_j^{(n-1)} \}$$
 (backward time).

LP formulation for MDP without discounting:

minimize
$$\sum_{i} \sum_{k} C_{ik} y_{ik}$$
subject to
$$\sum_{i} \sum_{k} y_{ik} = 1,$$
$$\sum_{k} y_{jk} - \sum_{i} \sum_{k} p_{ij}(k) y_{ik} = 0, \text{ for all } j,$$
$$y_{ik} \geq 0, \text{ for all } i \text{ and } k.$$

Policy improvement algorithm for MDP without discounting:

- 1. For a given policy, calculate v_0, \ldots, v_M and g from $v_M = 0$ and $g + v_i = C_{i,d_i} + \sum_j p_{ij}(d_i)v_j$.
- 2. The current policy is optimal if $g + v_i = \min_k \{ C_{ik} + \sum_j p_{ij}(k)v_j \}$. Otherwise, define a new policy by letting $d_i =$ a minimizing k above. Then go to 1.

LP formulation for MDP with discounting:

minimize
$$\sum_{i} \sum_{k} C_{ik} y_{ik}$$

subject to $\sum_{k} y_{jk} - \alpha \sum_{i} \sum_{k} p_{ij}(k) y_{ik} = \beta_{j}$, for all j , $y_{ik} \geq 0$, for all i and k .

where the constants in the right hand sides should satisfy $\beta_j > 0$ and $\sum_j \beta_j = 1$. Policy improvement algorithm for MDP with discounting:

- 1. For a given policy, calculate V_0, \ldots, V_M from $V_i = C_{i,d_i} + \alpha \sum_j p_{ij}(d_i)V_j$.
- 2. The current policy is optimal if $V_i = \min_k \{ C_{ik} + \alpha \sum_j p_{ij}(k) V_j \}$. Otherwise, define a new policy by letting $d_i =$ a minimizing k above. Then go to 1.

No calculator at the exam!