Formula-sheet at the exam in SF2863, December 2009

No calculator at the exam!

If events happen according to a Poisson process with rate A, 7 denotes the time between two

consecutive events, and X (7") denotes the number of events on the time interval [0, 7], then
AT

P(r<t)=1-—eM, P(X(T)=1/)= (T)e_)‘T, E[r] = 1/\, E[X(T)] = \T.

Markov chain in discrete time.

P = the matrix with elements p;; = P(X,41 =J | X, =19).

p(™ = the row vector with components pg.n) = P(X,, = j). Then p"t1) = p(P

The row vector 7 defines a stationary distribution if ™ = 7P, Ej m; =1 and m; > 0.

Markov chain in continuous time (also called Markov process with discrete state space).
P(h) the matrix with elements p;;j(h) = P(X(t+h) =j | X(t) =1).

p(t) = the row vector with components p;(t) = P(X(t) = j). Then p(t+h) = p(t)P(h).
Assumption: p;;(h) = ¢;jh + o(h) if j # i, while

pii(h) =1+ gih + o(h) =1 — g;h + o(h), where ¢; = —qi; = >, 4; Gij-

Thus, P(h) ~ I+ hQ and (p(t+h) —p(t))/h ~ p(t)Q for small h > 0.

The row vector m defines a stationary distribution if 7Q =0, ;™ =1land m; > 0.
The system 7Q = 0 can be written Zi# miqij + miq;5 = 0, for all j, or

Tj D krj ik = D_izj Tiij (“jumps out from state j = jumps into state ;7).

Some quantities and relations in queueing theory (where P, corresponds to m, above):
L= nPy, Lg=>" (n—8)Py, A=>0" A\P, L=AW, L, =AW,.
M/M/1: p=Xu<1, Py=1—p, P, =p"Py, L_1—pp‘
M/M/2: Ay =X forn>0, uy =p, pp=2p forn>2, p=X1/(2u) <1,
Py = g, P, =2p"Fy forn >1, Lzlipr'
Jackson queueing networks.
Calculate A1,..., Ay from A\j =aj+ >, Aipij. Check A\j < s;p;.
Analyze each service facility to obtain P(N —n])
Then P(Ni=mn1,..., Np=npy) = []; P(N;=n;).
W1, ..., W,, can be obtained from W, = Vi + Zj pi;W;, where V; = L; /\;.

Some deterministic inventory models.

Kd h
EOQ with shortage not permitted: Minimize 0 +cd+ TQ

Ci=min{C | i <j<n}. CF =Cipa+ K +h(riga+ 2riga + -+ (—i)ry).
J

Some stochastic inventory models.
C(S) =cS+pE[(§-9)"]+hE[(S-&)T].
If£isa continuous non-negative random Varlable then
E[(¢—8)*] = [§(t— ) fe(t)dt, BI(S—&)*] = [7(S—1)fe(t)dt
and C”(S) =c+p(Fe(S)—1) + hFe(S).
If € is a non-negative integer-valued random variable then S is integer and
E[(=5)*] = 3250~ S)pe(d) » BI(S—€)7) = 7 o(S=)ped),
and C(S+1)—C(S) =c+p(Fe(S)—1) + hF(5).



No calculator at the exam!

Marginal allocation for generating efficient solutions to the pair (f, g),
where f and g are integer-convex separable functions, f decreasing and
g increasing in the non-negative integer variables z1,...,Zy,.

Generate a table in which the j:th column contains the quotients

—Af;(0)/Ag;(0), —Af;(1)/Ag;(1), —=Af;(2)/Ag;(2), ...

Let all the quotients in the table be uncanceled.

Initiate the variables to their smallest feasible values and repeat the following:
Let ¢ be the number of the column with the largest uncanceled quotient.
Cancel this quotient, and increase the ¢:th variable x; by one.

Finite horizon MDP recursion (discounting if 0 < o < 1, no discounting if o = 1):

v = min{ Cy + 'Y, pi;(K)V"V ) (backward time).

i J
LP formulation for MDP without discounting;:

minimize ), >, Ciryik

subject to Y . > vk = 1,
>k Yik — 2 2k Pij(k)yik = 0, for all j,
yir, > 0, for all 4 and &.

Policy improvement algorithm for MDP without discounting;:

1. For a given policy, calculate vg,...,vy and g from
UM = 0 and g +v; = Cz‘,di + Zj pij(di)vj.

2. The current policy is optimal if ¢+ v; = ming{ Ci, + >_; pij(k)v; }-
Otherwise, define a new policy by letting d; = a minimizing k above.
Then go to 1.

LP formulation for MDP with discounting:

minimize Y, >, CirYik
subject to 32y yik — a2, >y pij(K)yik = B, for all j,
yir > 0, for all ¢ and k.
where the constants in the right hand sides should satisfy 3; > 0 and ) g B; = 1.
Policy improvement algorithm for MDP with discounting;:
1. For a given policy, calculate Vg, ..., Vs from V; = C; 4, + azj pij(di) V.

2. The current policy is optimal if V; = ming{ Ciy + >, pi;(k)V}.
Otherwise, define a new policy by letting d; = a minimizing k above.
Then go to 1.

No calculator at the exam!



