1. Slightly revised notations for part of Lecture 2, by Krister Svanberg

Consider a system with M + 1 states called 0, 1, ..., M.

Let X(t) = the state of the system at time t. X(t) is a random variable, defined for $t \ge 0$. Assumption 1: If $0 \le s < t \le t + h$, then

$$P(X(t+h) = j \mid X(t) = i, \ X(s) = \ell) = P(X(t+h) = j \mid X(t) = i).$$
(1.1)

In words, "P(X(t+h) = j | X(t) = i) does not depend on the history before time t". Assumption 2: If $0 \le t \le t+h$, then

$$P(X(t+h) = j \mid X(t) = i) = P(X(h) = j \mid X(0) = i).$$
(1.2)

In words, " $P(X(t+h) = j \mid X(t) = i)$ does not depend on t". Let

$$p_{ij}(h) = P(X(h) = j \mid X(0) = i),$$
(1.3)

and let $\mathbf{P}(h)$ be the $(M+1) \times (M+1)$ matrix with elements $p_{ij}(h)$. Note that $\mathbf{P}(0) = \mathbf{I}$.

Assumption 3: There are constants $q_{ij} \ge 0$, $i \ne j$, and $q_{ii} \le 0$, such that

$$p_{ij}(h) = q_{ij}h + o(h)$$
 if $j \neq i$, while $p_{ii}(h) = 1 + q_{ii}h + o(h)$. (1.4)

Since $\sum_{j} p_{ij}(h) = 1$, we get that $\sum_{j} q_{ij} = 0$, so that $q_{ii} = -\sum_{j \neq i} q_{ij}$ for all *i*. Sometimes the notation $q_i = -q_{ii}$ is used, which means that

$$p_{ii}(h) = 1 - q_i h + o(h)$$
, where $q_i = \sum_{j \neq i} q_{ij} \ge 0.$ (1.5)

Assumption 3 is equivalent to that

1

$$\lim_{h \to 0^+} \frac{\mathbf{P}(h) - \mathbf{I}}{h} = \mathbf{Q}, \qquad (1.6)$$

where **Q** is the $(M+1) \times (M+1)$ matrix with elements q_{ij} . Now let

$$p_j(t) = P(X(t) = j)$$
 and $\mathbf{p}(t) = (p_0(t), \dots p_M(t)).$ (1.7)

Then, for all $t \ge 0$ and $h \ge 0$,

$$p_j(t+h) = \sum_{i=0}^{M} p_i(t) \, p_{ij}(h), \tag{1.8}$$

which equivalently can be written

$$\mathbf{p}(t+h) = \mathbf{p}(t)\mathbf{P}(h). \tag{1.9}$$

By subtracting $\mathbf{p}(t)$ from both sides and dividing by h, we get

$$\frac{\mathbf{p}(t+h) - \mathbf{p}(t)}{h} = \mathbf{p}(t) \frac{\mathbf{P}(h) - \mathbf{I}}{h},$$
(1.10)

and by letting $h \to 0^+$, we obtain

$$\dot{\mathbf{p}}(t) = \mathbf{p}(t)\mathbf{Q}.\tag{1.11}$$

If $\mathbf{p}(0)$ is known, this system of linear differential equations can be solved to obtain $\mathbf{p}(t)$.

Example:

Consider a simple system with only two states: "Functioning" (= state 0) and "Failed" (= state 1). Let X(t) = the state of the system at time t.

Assumptions:

$$\begin{split} P(X(t+h) &= 1 \mid X(t) = 0) = \lambda h + o(h), \\ P(X(t+h) &= 0 \mid X(t) = 0) = 1 - \lambda h + o(h), \\ P(X(t+h) &= 0 \mid X(t) = 1) = \mu h + o(h), \\ P(X(t+h) &= 1 \mid X(t) = 1) = 1 - \mu h + o(h). \end{split}$$

Interpretation:

When the system is functioning, the time until it fails is $\exp(\lambda)$. When the system is failed, the time until it will function is $\exp(\mu)$. The expected functioning time between failures is $1/\lambda$, The expected repair time is $1/\mu$. λ is the failure rate while μ is the repair rate.

The matrix **Q** for this example is $\mathbf{Q} = \begin{bmatrix} -\lambda & \lambda \\ \mu & -\mu \end{bmatrix}$. Let $p_0(t) = P(X(t) = 0)$ and $p_1(t) = P(X(t) = 1)$. Then the differential equations $\dot{\mathbf{p}}(t) = \mathbf{p}(t)\mathbf{Q}$ become

Then the differential equations $\dot{\mathbf{p}}(t) = \mathbf{p}(t)\mathbf{Q}$ becomes

$$\dot{p}_0(t) = -\lambda \, p_0(t) + \mu \, p_1(t),$$

$$\dot{p}_1(t) = \, \lambda \, p_0(t) - \mu \, p_1(t).$$

The solution of this system is

$$p_0(t) = \frac{\mu}{\lambda + \mu} + \left(p_0(0) - \frac{\mu}{\lambda + \mu}\right) e^{-(\lambda + \mu)t},$$
$$p_1(t) = \frac{\lambda}{\lambda + \mu} + \left(p_1(0) - \frac{\lambda}{\lambda + \mu}\right) e^{-(\lambda + \mu)t},$$

from which it follows that

$$p_0(t) \to \frac{\mu}{\lambda + \mu} = \pi_0 \text{ and } p_1(t) \to \frac{\lambda}{\lambda + \mu} = \pi_1, \text{ when } t \to \infty.$$

Note that this aymptotic distribution $\pi = (\pi_0, \pi_1)$ is the unique solution to the system of linear equations

$$\pi \mathbf{Q} = \mathbf{0}$$
 and $\pi_0 + \pi_1 = 1$.

This is no coincidence!