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1. We can think of the support center as a Jackson network. The reception is a M |M |2
queue with arrival intensity λR and service intensity µR = 24 per server. Frasse’s
service is a M |M |1 queue with arrival intensity λF and service intensity µF = 40
per server. The reception is a M |M |1 queue with arrival intensity λH and service
intensity µR = 20 per server.

(a) Let λR = 40 be the arrival intensity from the outside, i.e. the intensity in to the
reception. The traffic balance equations are λF = 3/4λR + 1/2λH and λH =
1/4λR + 1/5λF which yields, λF = 350/9 and λH = 160/9. We can now check
that the low traffic requirements are satisfied, i.e., that λR = 40 < 2 ∗µR = 48,
λF = 350/9 < µF = 40, and λH = 160/9 < µH = 20.

LR = 2ρR/(1−ρ2R) = 60/11, LF = ρF /(1−ρF ) = 35, and LH = ρH/(1−ρH) =
8.

The average total number of customers in the systems is then L = LR + LH +
LF = 43 + 60/11 ≈ 48.5

(b) Let VR, VF and VH be the average time it takes from a call arrives to one of
the service stations until it leaves it, i.e., VR = LR/λR = 2ρR/(1 − ρ2R)/λR =
60/11/40 = 3/22, VF = LF /λF = ρF /(1 − ρF )/λF = 35/(350/9) = 9/10, and
VH = LH/λH = ρH/(1− ρH)/λH = 8/(160/9) = 9/20.

Letting WR be the average time from a call arrives to station R until it exits
the system , WF be the average time from a call arrives to station F until it
exits the system, and WH be the average time from the call arrives to station
H until it exits the system, then

WR = VR + 3/4WF + 1/4WH

WF = VF + 1/5WH

WH = VH + 1/2WF

and WR = 1.21.

Alternatively, Wilsons formula says that WR = L/ΛR = 48.5/40 = 1.21.

The average cost is then WR ∗ 4 ∗ 60 = 291 SEK

2. This can be solved using the newsboy problem formulation. Let p = m = 20,
h = k − g = 40− 10 = 30 and c = C − k = 30− 40 = −10.
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(a) Then the optimal target price satisfies p−c
p+h = 20+10

20+30 = 30
50 = F (S∗).

F is the cumulative distribution function of the demand, which is assumed to
be uniform on the interval (0,100), i.e. F (t) = t/100 on the interval. F (60) =
30/50 and therefore S∗ = 60.

(b) The forward difference of the expected cost is

∆C(59) = C(60)−C(59) = −10+(20)[60/101−1]+(30)60/101 =
−1010− 820 + 1800

101
= − 30

101

and

∆C(60) = C(61)−C(60) = −10+(20)[61/101−1]+(30)61/101 =
−1010− 800 + 1830

101
=

20

101

so C decreases from 59 to 60 and then increases from 60 to 61. Therefore,
there is a local minimum at C = 60, which is also a global minimum since
∆2C(S) = (p+ h)∆Fξ(S) = 50P (ξ = S + 1) ≥ 0 shows that the expected cost
is an integer-convex function.

3. (a) Let xi = 1 if app nr i is on the startpage and xi = 0 if app nr i is not on the
startpage.

Let f(x1, · · · , xN ) = −
∑N

i=1 xivi and g(x1, · · · , xN ) =
∑N

i=1 xisi.

Then f and g are separable functions, f is decreasing and g is increasing.
Furthermore, ∆2f = ∆2g = 0 since the functions are linear, so they are both
integer-convex. We can then apply the Marginal Allocation algorithm.

Note that ∆fi(x) = −vi and ∆gi(x) = vi, so the quotients −∆Fi(x)/∆gi(x) =
vi/si does not depend on x. Here v1/s1 = 1/1, v2/s2 = 2/1, v3/s3 = 5/2,
v4/s4 = 6/2, v5/s5 = 8/3.

The efficient allocations are therefore,
x(0) = (x1 = 0, x2 = 0, x3 = 0, x4 = 0, x5 = 0), f(x(0)) = 0, g(x(0)) = 0
x(1) = (x1 = 0, x2 = 0, x3 = 0, x4 = 1, x5 = 0), f(x(1)) = −6, g(x(1)) = 2
x(2) = (x1 = 0, x2 = 0, x3 = 0, x4 = 1, x5 = 1), f(x(2)) = −14, g(x(2)) = 5
x(3) = (x1 = 0, x2 = 0, x3 = 1, x4 = 1, x5 = 1), f(x(3)) = −19, g(x(3)) = 7
x(4) = (x1 = 0, x2 = 1, x3 = 1, x4 = 1, x5 = 1), f(x(4)) = −21, g(x(4)) = 8
x(5) = (x1 = 1, x2 = 1, x3 = 1, x4 = 1, x5 = 1), f(x(5)) = −22, g(x(5)) = 9

(b) The optimization problem is then

max
x1,···,xM

∑M
i=1 xivi

s.t.
∑M

i=1 xisi ≤ N
xi ∈ {0, 1} for i = 1, · · · ,M.

(c) Introduce the stage k as the reduced problem when Frasse has only apps of type k, · · · ,M
to choose from. Introduce the state, nk = how many free spaces Frasse has at stage k,
which we assume is non-negative.

Let

(Pk(n))

max
xk,···,xM

∑M
i=k xivi

s.t.
∑M

i=k xisi ≤ n
xi ∈ {0, 1} for i = k, · · · ,M.
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and define f∗k (n) to be the function mapping n to the optimal value of (Pk(n)).

Then nk−1 = nk − skxk.
The DynP recursion can be written as

f∗` (n`) = max
x`=0,1

{
v`x` + f∗`+1(n` − s`x`)

}
= max

{
f∗`+1(n`), v` + f∗`+1(n` − s`)

}
,

and the boundary condition is that f∗M+1 = 0.

The DynP problem is solved in the attached figure, where f∗1 (0) = 0, f∗1 (1) = 2, f∗1 (2) = 6,
f∗1 (3) = 8, f∗1 (4) = 11, f∗1 (5) = 14, f∗1 (6) = 16, f∗1 (7) = 19, f∗1 (8) = 21.

The x̂ = (0, 1, 1, 1, 1) is optimal for N = 8.

4. (a) We need to keep track of the position of the pawn, define the state

sk =


0 if pawn is on square 0
1 if pawn is on square 1
2 if pawn is on square 2
3 if pawn is on square 3

Define the decisions

xk =

{
1 if Frasse uses die 1 turn k
2 if Frasse uses die 2 turn k

The transition probabilities are
pij(k) = the probability of jumping from state i to j if we make decision k.

Here, from square 0
p00(1) = 0, p01(1) = 1/2, p02(1) = 1/3, p03(1) = 1/6,
p00(2) = 0, p01(2) = 1/3, p02(2) = 1/3, p03(2) = 1/3,

Here, from square 1
p10(1) = 1/6, p11(1) = 0, p12(1) = 1/2, p13(1) = 1/3,
p10(2) = 1/3, p11(2) = 0, p12(2) = 1/3, p13(2) = 1/3,

Here, from square 2
p20(1) = 1/2, p21(1) = 0, p22(1) = 0, p23(1) = 1/2,
2p20(2) = 2/3, p21(2) = 0, p22(2) = 0, p23(2) = 1/3,

Here, from square 3
p30(1) = 1, p31(1) = 0, p32(1) = 0, p33(1) = 0,
p30(2) = 1, p31(2) = 0, p32(2) = 0, p33(2) = 0,

Then the expected “cost” of making decision xk at state sk is Csk,xk =
∑3

j=0 qsk,jpsk,j(xk).

(The cost is an income here, so we maximize it instead)

So at sk = 0
C01 = 0 · 0 + 1 · 1/2 + 2 · 1/3 + 3 · 1/6 = 5/3 for xk = 1
C02 = 0 · 0 + 1 · 1/3 + 2 · 1/3 + 3 · 1/3 = 2 for xk = 2
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So at sk = 1
C11 = 0 · 1/6 + 1 · 0 + 2 · 1/2 + 3 · 1/3 = 2 for xk = 1
C12 = 0 · 1/3 + 1 · 0 + 2 · 1/3 + 3 · 1/3 = 5/3 for xk = 2

So at sk = 2
C21 = 0 · 1/2 + 1 · 0 + 2 · 0 + 3 · 1/2 = 3/2 for xk = 1
C22 = 0 · 2/3 + 1 · 0 + 2 · 0 + 3 · 1/3 = 1 for xk = 2

So at sk = 3
C31 = 0 · 1 + 1 · 0 + 2 · 0 + 3 · 0 = 0 for xk = 1
C32 = 0 · 1 + 1 · 0 + 2 · 0 + 3 · 0 = 0 for xk = 2

(b) Let yik = probability of beeing in state i and making decision k.

Let the objective function be defined by (if we maximize, otherwise we have to
put a minus in front).

f = C01y01 + C11y11 + C21y21 + C31y31 + C02y02 + C12y12 + C22y22 + C32y32

One constraint is (summing all probabilities)

y01 + y11 + y21 + y31 + y02 + y12 + y22 + y32 = 1

non-negativity constraints

y01 ≥ 0, y11 ≥ 0, y21 ≥ 0, y31 ≥ 0, y02 ≥ 0, y12 ≥ 0, y22 ≥ 0, y32 ≥ 0.

finally

y01+y02−(p00(1)y01 + p10(1)y11 + p20(1)y21 + p30(1)y31 + p00(2)y02 + p10(2)y12 + p20(2)y22 + p30(2)y32) = 0

y11+y12−(p01(1)y01 + p11(1)y11 + p21(1)y21 + p31(1)y31 + p01(2)y02 + p11(2)y12 + p21(2)y22 + p31(2)y32) = 0

y01+y02−(p02(1)y01 + p12(1)y11 + p22(1)y21 + p32(1)y31 + p02(2)y02 + p12(2)y12 + p22(2)y22 + p32(2)y32) = 0

y01+y02−(p03(1)y01 + p13(1)y11 + p23(1)y21 + p33(1)y31 + p03(2)y02 + p13(2)y12 + p23(2)y22 + p33(2)y32) = 0

One of these last four should be removed due to linear dependence.

Then, from the solution of the linear program we can determine π0 = y01 + y02
,π1 = y11 + y12 ,π2 = y21 + y22 and π3 = y31 + y32 which are the stationary
probabilities of beeing in a certain state..

Finally Dik = yik/πi, determines the optimal policy. Dik is defined as the
probability of making decision k in state i, but it can be shown that it will be
either 0 or 1, i.e., a deterministic policy.

(c) Starting policy:
If sk = 0, make decision xk = 2, for the expected cost 2.
If sk = 1, make decision xk = 1, for the expected cost 2.
If sk = 2, make decision xk = 1, for the expected cost 3/2.
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If sk = 3, make decision xk = 1, for the expected cost 0.

Use the policy iteration algorithm. Let v3 = 0, then the value determination
equations

g + v0 = 2 + 0v0 + 1/3v1 + 1/3v2 + 1/3v3

g + v1 = 2 + 1/6v0 + 0v1 + 1/2v2 + 1/3v3

g + v2 = 3/2 + 1/2v0 + 0v1 + 0v2 + 1/2v3

g + v3 = 0 + 1v0 + 0v1 + 0v2 + 0v3

gives g = 123/91, v0 = 123/91, v1 = 9/7, v2 = 75/91 and v3 = 0.

We see that v0 is the largest of the vi, so it is best to start from square 0 if we
can choose. (assuming we use the initial policy)

To find out if it is optimal we do one step of the policy iteration.

For i = 0

max
k=1,2

{C0k + (p00(k)v0 + p01(k)v1 + p02(k)v2 + p03(k)v3)} =

= max{C01+(p00(1)v0+p01(1)v1+p02(1)v2+p03(1)v3), C02+(p00(2)v0+p01(2)v1+p02(2)v2+p03(2)v3)}

= max{5/3 + (1/2v1 + 1/3v2)︸ ︷︷ ︸
1411/546

, 2 + (1/3v1 + 1/3v2)︸ ︷︷ ︸
246/91

, } = 246/91 for k = 2.

For i = 1

max
k=1,2

{C1k + (p10(k)v0 + p11(k)v1 + p12(k)v2 + p13(k)v3)} =

= max{C11+(p10(1)v0+p11(1)v1+p12(1)v2+p13(1)v3), C12+(p10(2)v0+p11(2)v1+p12(2)v2+p13(2)v3)}

= max{2 + (1/6v0 + 1/2v2)︸ ︷︷ ︸
240/91

, 5/3 + (1/3v0 + 1/3v2)︸ ︷︷ ︸
653/273

, } = 240/91 for k = 1.

For i = 2

max
k=1,2

{C2k + (p20(k)v0 + p21(k)v1 + p22(k)v2 + p23(k)v3)} =

= max{C21+(p20(1)v0+p21(1)v1+p22(1)v2+p23(1)v3), C22+(p20(2)v0+p21(2)v1+p22(2)v2+p23(2)v3)}

= max{3/2 + (1/2v0 + 1/2v2)︸ ︷︷ ︸
198/91

, 1 + 2/3v0︸ ︷︷ ︸
173/91

, } = 198/91 for k = 1.

For i = 3

max
k=1,2

{C3k + (p30(k)v0 + p31(k)v1 + p32(k)v2 + p33(k)v3)} =

= max{C31+(p30(1)v0+p31(1)v1+p32(1)v2+p33(1)v3), C32+(p30(2)v0+p31(2)v1+p32(2)v2+p33(2)v3)}

= max{0 + (1v0)︸ ︷︷ ︸
123/91

, 0 + (1v0)︸ ︷︷ ︸
123/91

, } = 123/91 for k = 1. (or 2)

So the initial policy is optimal.


