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1. Minimizing an integer-convex function of a single variable

Let N denote the set of natural numbers (non-negative integers), N = {0,1,2,...,},
and let IR denote the set of real numbers.

Further, let f be a given function from N to IR, and consider the optimization problem
minimize f(z) subject to z € V. (1.1)

Def: The number & € N is an optimal solution to (1.1) if f(z) < f(z) for all z € N.
In this case, the optimal value of the problem (1.1) is given by f(&).

For a completely general function f, (1.1) might be an impossible problem to solve (since
there is an infinite number of numbers to compare.) But if f has certain properties, (1.1)
could be solvable, perhaps even easily solvable. One such property will be discussed next.

For each number x € N, let

Af(x) = flz+1) = f(2). (1.2)
Def: The function f from N to IR is integer-convez if Af(z+1) > Af(z) for all z € N.

Prop 1.1: Assume that f is an integer-convex function from N to IR.
Then the number Z is an optimal solution to problem (1.1) if and only if
the following inequalities are satisfied:

Af(E—1)< 0 <Af(2) if 2>0),

(1.3)
0 <Af(0) if &=
Proof:
If 2 >0and Af(z—1) > 0 then f(z—1) < f(Z) and & is not optimal.
If 2 >0and Af(z) <0 then f(z+1) < f(2) and Z is not optimal.
If 2 =0 and Af(0) > 0 then, since f is integer-convex, Af(z) > 0 for all =z > 0.
This implies that f(0) < f(1) < f(2) < ..., so that £ = 0 is optimal.
If >0, Af(z) >0and Af(z—1) <0 then, since f is integer-convex,
Af(x) >0 for all x > & and Af(z) <0 for all z <& — 1. This implies that
F(8) < F@r1) < f@+2) < ... and f(@) < f(E-1) < ... < f(0),
so that % is optimal.

These optimality criteria can obviously be used for solving problem (1.1):
If Af(z) < 0 then x is too small to be optimal, while if Af(z—1) > 0 then x is too large.



2. Minimizing integer-convex separable functions of several variables

Let N denote the set of vectors x = (z1,...,x,)" with natural numbers as components.
Further, let f be a given function from N™ to IR, and consider the optimization problem

minimize f(x) subject to x € N™. (2.1)
Def: The vector X € N is an optimal solution to (2.1) if f(X) < f(x) for all x € N.

In this case, the optimal value of the problem (2.1) is given by f(X).
Def: The function f from N™ to IR is separable if f can be written

Fx) =) filxy), (2.2)
j=1

where, for each j =1,...,n, f; is a function from N to IR.
For separable functions, there is a natural definition of integer-convexity:
Def: The separable function f in (2.2) is integer-convez if each f; is integer-convex.

Prop 2.1: Assume that f is an integer-convex separable function from N™ to IR.
Then the vector X is an optimal solution to problem (2.1) if and only if
the following inequalities are satisfied for each j =1,...,n:

Afj(.f;‘j—l) <0< Afj(.f;‘j) if .f;‘j > 0,

(2.3)
0 <Af(0) if #=0.

Proof: The statement follows from Prop 1.1, together with the observation that the sum
flx) = Zj fj(x;) is minimized if and only if each term f;j(x;) is minimized (since there is no
coupling between the variables).

3. Efficient points for two integer-convex separable functions

Let f and g be two given integer-convex separable functions from N™ to IR:

) =" fila;) and g(x) = g;(x)). (3.1)
j=1

J=1

Further assume that both f(x) and g(x) stands for quantities that we would like to be small,
but that each fj(x;) is strictly decreasing in x; while each g;(z;) is strictly increasing in ;.
This causes a conflict: Large values on the variables z; will tend to make f(x) small, which
is desirable, but g(x) large, which is undesirable. Small values on the variables x; will tend
to make g(x) small, which is desirable, but f(x) large, which is undesirable. This section
deals with how to compromise between these conflicting goals.



To summarize the assumptions:

Afj(z;) < Afj(xzj+1) <0 for all jand all z; € NV,

3.2
0 < Agj(zj) < Agj(xz;j+1) forall jand all z; € N. 32

Let ¢g™#* be a given upper bound on the acceptable values of g(x): Points x with g(x) > ¢g™**
are assumed to be unacceptable (e.g. too expensive). Further let

X ={xeN"|g(x) < g™} (3.3)
Since each function g; is strictly increasing and integer-convex, the set X contains a finite

number of vectors x, but this finite number may in practical applications be extremely large.

Def: The vector X € X is an efficient solution corresponding to the above setting
if there are constants a > 0 and 8 > 0 such that %X is an optimal solution
to the following optimization problem in x:

minimize ag(x) + Bf(x) subject tox € X. (3.4)

Next, we will give a natural geometric interpretation of the efficient solutions defined above.

Let
M = {(9(x),f(x)) | x € X} C R”. (3.5)
This set M contains a finite (but possibly extremely large) number of points in IR2. To get a

picture of M, we may imagine that the points in M are plotted in a coordinate system where
the horizontal axis shows g(x) and the vertical axis shows f(x).

The convex hull of M is defined as the smallest conver set in JR? which contains M.
Geometrically, the convex hull of M is what you get if you “stretch a rope” around M.



The efficient curve for the current setting is the piecewise linear curve that constitutes the
“southwestern boundary” of the convex hull of M. Points (g(x), f(x)) € M which lie on
this efficient curve are called efficient points, and the corresponding vectors x are in fact the
efficient solutions defined above. Here is an argument to motivate this last statement:

From a two-dimensional figure where the points of M are plotted and the convex hull of
M is drawn, it follows that a point (£,7) = (g(&), f(X)) € M belongs to the “southwestern
boundary” of the convex hull of M if and only if there are constants a > 0 and 8 > 0 such
that (é ,7) is an optimal solution to the following optimization problem in £ and 7:

minimize « &+ fn subject to (&,n) € M. (3.6)
But this problem (3.6) is equivalent to the the above problem (3.4) in x.

n

Typically, we are interested in determining the efficient curve for a given situation, with given
functions f and g. It turns out that even if the number of points in M is extremely large, it
is surprisingly easy to determine the efficient curve! We will describe below how this is done,
but first some preparatory results.

Prop 3.1: The vector % € X minimizes a g(x) + 3f(x) subject to x € X if and only if

the following conditions are satisfied for each j =1,...,n:
“AfE) oo SAf@-1)
Agj(2;) — B~ Ag(#;—1) ’ 3.7
-Af(00) o
— = < — if 7, =0, 3.8
Ag0) =@ 10 (35

Proof: Just replace f(x) by ag(x) + 3f(x) in Prop 2.1



From this proposition, together with the above definition of an efficient solution, we get the
following criteria for deciding whether a vector X is an efficient solution or not:

Prop 3.2: x € X is an efficient solution if and only if there are constants > 0 and 3 > 0
such that the conditions (3.7)-(3.8) are satisfied for each j =1,...,n.

The following result shows that each efficient solution is in fact an optimal solution to two
particular optimization problems.

Prop 3.3: Assume that X € X is an efficient solution, and let § = g(X) and f= f(%).
Then %X is an optimal solution to both the following optimization problems:

minimize f(x) subject to g(x) < g, x € X. (3.9)
minimize g¢(x) subject to f(x) < f, x € X. (3.10)
Proof: If X is an efficient solution then there are constants o« > 0 and 8 > 0 such that
ag(X)+ Bf (%) <ag(x)+ Bf(x), forall x € X. (3.11)
First, take an arbitrary x € X such that g(x) < g. Then, according to (3.11), it holds that
&) = f(x) < (a/B)(9(x) = g(R)) = (a/P)(9(x) —g) <0, (3.12)

which implies that X is an optimal solution to (3.9).
<f

Next, take an arbitrary x € X such that f(x) < f. Then, according to (3.11), it holds that

9(%) = g(x) < (B/a)(f(x) = f(R)) = (B/)(f(x) - f) <0, (3.13)

which implies that X is an optimal solution to (3.10).

Important note:

Since the constants « and 3 are assumed to be > 0, and since X minimizes « g(x) + 5f(x) if
and only if X minimizes g(x)+(5/a)f(x), (and if and only if X minimizes (a/3) g(x)+ f(x)),
we may without loss of generality assume that o = 1 everywhere above (or, alternatively,
that 5 = 1 everywhere above). This is sometimes done in applications of this theory.



4. Marginal allocation algorithm for generating efficient solutions

We will now describe a surprisingly simple algorithm for determining the efficient curve
described above, but first we repeat the assumptions that f is integer-convex and strictly
decreasing in each variable, while g is integer-convex and strictly increasing in each variable.

The algorithm start from x(®) = 0 (which is an efficient solution) and generates efficient
solutions x(M,x@ xB) . “from left to right”, which means that each new generated point
has a higher value on g(x) but a lower value on f(x) than the previously generated point.
Throughout the algorithm x*) denotes the k:th generated efficient solution.

The algorithm terminates when there is no longer any efficient solution with g(x) < g™*.

Step O:

Generate a table with n columns as follows. For j = 1,...,n, fill the j:th column from the
top and down with the quotients —Af;(0)/Ag;(0), —Af;(1)/Ag;(1), —Af;(2)/Ag;(2), etc...
(A moderate number of quotients will suffice, additional quotients can be calculated as
needed.) Note that the quotients are positive and strictly decreasing in each column.

Set k=0, xO =(0,...,0)T, g(x@) =g(0) and f(x) = f£(0).

Let all the quotients in the table be uncanceled.

Step 1:

Select the largest uncanceled quotient in the table (if there are several equally large, choose
one of these arbitrarily). Cancel this quotient and let ¢ be the number of the column from
which the quotient was canceled.

Step 2:

Let k:=k+ 1. Then let 2" = 2{" 4+ 1 and 2= 2"V for a1 j £ ¢.

Further, calculate f(x®)) = f(x(k—1) —I—Afg(xgkfl)) and g(x®)) = g(x(*-1)) —I-Agg(azékfl)).

If g(x(*)) > g™a* terminate the algorithm. Otherwise, go to Step 1.

Note that each generated solution x(*) differs from the previously generated solution x(*~1)

in just one component. The name of the algorithm stems from the fact that

—Afj(z;)  decrease in f(x) if x; is increased by 1

Agj(xj) increase in g(x) if x; is increased by 1°

Hence, in each step of the algorithm, we increase the x; which gives marginally the largest
decrease in f(x) per increase in g(x).

Prop 4.1: Each generated solution x(*) is an efficient solution.

Proof: Consider a given generated solution x(*). Choose a > 0 and 3 > 0 such that a/f =
the quotient that was canceled in Step 1 immediately before x*) was generated in Step 2.
Then all canceled quotients are > «/3, while all uncanceled quotients are < a/3. But then
x®) and a/f satisfy conditions (3.7)-(3.8) for each j = 1,...,n, which implies that x*) is
an efficient solution.



Prop 4.2: Assume that all quotients —Af;(x;)/Ag;(x;) in the original table are different.
Then the algorithm generates all efficient solutions which satisfy g(x) < g™#*.

Proof: Assume that X is an efficient solution. Then the conditions (3.7)-(3.8) are satisfied
for some a/B. But if all quotients are different, then a/ can be perturbed such that all

inequalities in (3.7)—(3.8) becomes strict inequalities, so that, for each j =1,...,n,
—Afi(z;) _a . .
——t < — ifx; >, 4.1
Agj (1,3) ﬂ J J ( )
—Afjlz) _a .
— s — e, <T;. 4.2
Agj(zy) — s 7 (42

These conditions determine X uniquely. However, this solution will actually be generated
by the algorithm in the stage where the latest canceled quotient is > «/3, while the largest
quotient that has not yet been canceled is < «//f.

5. An important special case

Assume that g;(z;) = cz;, where ¢ is a positive constant which do not depend on j, so that
n

g(x)=cd ;. (5.1)
j=1

Then the generated efficient points satisfy g(x¥)) = ck, for k =1,2, ...
It then follows from Prop 3.3 that, for each k € A/, x*) is an optimal solution to the problem

minimize f(x) subject to g(x) <ck, x € X. (5.2)

Moreover, since g(x)/c =3, x; € N for all x € X, it follows that if the constant by, satisfies
ck < by < c(k+1), then x® is an optimal solution also to the problem

minimize f(x) subject to g(x) <bp, x € X. (5.3)
Thus, for any right hand side b > 0, we can solve the problem
minimize f(x) subject to g(x) <b, x € X. (5.4)

Just let k& be obtained by rounding b/c downwards to the nearest integer. Then x*) is an
optimal solution.



