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1. Minimizing an integer-convex function of a single variable

Let N denote the set of natural numbers (non-negative integers), N = {0, 1, 2, . . . , },
and let IR denote the set of real numbers.

Further, let f be a given function from N to IR, and consider the optimization problem

minimize f(x) subject to x ∈ N . (1.1)

Def: The number x̂ ∈ N is an optimal solution to (1.1) if f(x̂) ≤ f(x) for all x ∈ N .
In this case, the optimal value of the problem (1.1) is given by f(x̂).

For a completely general function f , (1.1) might be an impossible problem to solve (since
there is an infinite number of numbers to compare.) But if f has certain properties, (1.1)
could be solvable, perhaps even easily solvable. One such property will be discussed next.

For each number x ∈ N , let
∆f(x) = f(x+1) − f(x). (1.2)

Def: The function f from N to IR is integer-convex if ∆f(x+1) ≥ ∆f(x) for all x ∈ N .

Prop 1.1: Assume that f is an integer-convex function from N to IR.
Then the number x̂ is an optimal solution to problem (1.1) if and only if
the following inequalities are satisfied:

∆f(x̂−1) ≤ 0 ≤ ∆f(x̂) if x̂ > 0 ,

0 ≤ ∆f(0) if x̂ = 0 .
(1.3)

Proof:

If x̂ > 0 and ∆f(x̂−1) > 0 then f(x̂−1) < f(x̂) and x̂ is not optimal.
If x̂ ≥ 0 and ∆f(x̂) < 0 then f(x̂+1) < f(x̂) and x̂ is not optimal.
If x̂ = 0 and ∆f(0) ≥ 0 then, since f is integer-convex, ∆f(x) ≥ 0 for all x ≥ 0.
This implies that f(0) ≤ f(1) ≤ f(2) ≤ . . . , so that x̂ = 0 is optimal.
If x̂ > 0, ∆f(x̂) ≥ 0 and ∆f(x̂−1) ≤ 0 then, since f is integer-convex,
∆f(x) ≥ 0 for all x ≥ x̂ and ∆f(x) ≤ 0 for all x ≤ x̂ − 1. This implies that
f(x̂) ≤ f(x̂+1) ≤ f(x̂+2) ≤ . . . , and f(x̂) ≤ f(x̂−1) ≤ . . . ≤ f(0),
so that x̂ is optimal.

These optimality criteria can obviously be used for solving problem (1.1):
If ∆f(x) < 0 then x is too small to be optimal, while if ∆f(x−1) > 0 then x is too large.
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2. Minimizing integer-convex separable functions of several variables

Let N n denote the set of vectors x = (x1, . . . , xn)T with natural numbers as components.
Further, let f be a given function from N n to IR, and consider the optimization problem

minimize f(x) subject to x ∈ N n . (2.1)

Def: The vector x̂ ∈ N n is an optimal solution to (2.1) if f(x̂) ≤ f(x) for all x ∈ N n.
In this case, the optimal value of the problem (2.1) is given by f(x̂).

Def: The function f from N n to IR is separable if f can be written

f(x) =
n∑

j=1

fj(xj), (2.2)

where, for each j = 1, . . . , n, fj is a function from N to IR.

For separable functions, there is a natural definition of integer-convexity:

Def: The separable function f in (2.2) is integer-convex if each fj is integer-convex.

Prop 2.1: Assume that f is an integer-convex separable function from N n to IR.
Then the vector x̂ is an optimal solution to problem (2.1) if and only if
the following inequalities are satisfied for each j = 1, . . . , n:

∆fj(x̂j−1) ≤ 0 ≤ ∆fj(x̂j) if x̂j > 0 ,

0 ≤ ∆fj(0) if x̂j = 0 .
(2.3)

Proof: The statement follows from Prop 1.1, together with the observation that the sum
f(x) =

∑
j fj(xj) is minimized if and only if each term fj(xj) is minimized (since there is no

coupling between the variables).

3. Efficient points for two integer-convex separable functions

Let f and g be two given integer-convex separable functions from N n to IR:

f(x) =
n∑

j=1

fj(xj) and g(x) =
n∑

j=1

gj(xj). (3.1)

Further assume that both f(x) and g(x) stands for quantities that we would like to be small,
but that each fj(xj) is strictly decreasing in xj while each gj(xj) is strictly increasing in xj.
This causes a conflict: Large values on the variables xj will tend to make f(x) small, which
is desirable, but g(x) large, which is undesirable. Small values on the variables xj will tend
to make g(x) small, which is desirable, but f(x) large, which is undesirable. This section
deals with how to compromise between these conflicting goals.
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To summarize the assumptions:

∆fj(xj) ≤ ∆fj(xj+1) < 0 for all j and all xj ∈ N ,

0 < ∆gj(xj) ≤ ∆gj(xj +1) for all j and all xj ∈ N .
(3.2)

Let gmax be a given upper bound on the acceptable values of g(x): Points x with g(x) > gmax

are assumed to be unacceptable (e.g. too expensive). Further let

X = {x ∈ N n | g(x) ≤ gmax}. (3.3)

Since each function gj is strictly increasing and integer-convex, the set X contains a finite
number of vectors x, but this finite number may in practical applications be extremely large.

Def: The vector x̂ ∈ X is an efficient solution corresponding to the above setting
if there are constants α > 0 and β > 0 such that x̂ is an optimal solution
to the following optimization problem in x :

minimize α g(x) + βf(x) subject to x ∈ X . (3.4)

Next, we will give a natural geometric interpretation of the efficient solutions defined above.

Let
M = { (g(x), f(x)) | x ∈ X} ⊂ IR 2. (3.5)

This set M contains a finite (but possibly extremely large) number of points in IR 2. To get a
picture of M , we may imagine that the points in M are plotted in a coordinate system where
the horizontal axis shows g(x) and the vertical axis shows f(x).

g(x)

f(x)

M

The convex hull of M is defined as the smallest convex set in IR 2 which contains M .
Geometrically, the convex hull of M is what you get if you “stretch a rope” around M .

3



The efficient curve for the current setting is the piecewise linear curve that constitutes the
“southwestern boundary” of the convex hull of M . Points (g(x), f(x)) ∈ M which lie on
this efficient curve are called efficient points, and the corresponding vectors x are in fact the
efficient solutions defined above. Here is an argument to motivate this last statement:

From a two-dimensional figure where the points of M are plotted and the convex hull of
M is drawn, it follows that a point (ξ̂, η̂) = (g(x̂), f(x̂)) ∈ M belongs to the “southwestern
boundary” of the convex hull of M if and only if there are constants α > 0 and β > 0 such
that (ξ̂, η̂) is an optimal solution to the following optimization problem in ξ and η:

minimize α ξ + β η subject to (ξ, η) ∈ M. (3.6)

But this problem (3.6) is equivalent to the the above problem (3.4) in x.

ξ

η

(ξ̂, η̂)

M

Typically, we are interested in determining the efficient curve for a given situation, with given
functions f and g. It turns out that even if the number of points in M is extremely large, it
is surprisingly easy to determine the efficient curve! We will describe below how this is done,
but first some preparatory results.

Prop 3.1: The vector x̂ ∈ X minimizes αg(x) + βf(x) subject to x ∈ X if and only if
the following conditions are satisfied for each j = 1, . . . , n:

−∆fj(x̂j)

∆gj(x̂j)
≤

α

β
≤

−∆fj(x̂j−1)

∆gj(x̂j−1)
if x̂j > 0 , (3.7)

−∆fj(0)

∆gj(0)
≤

α

β
if x̂j = 0 , (3.8)

Proof: Just replace f(x) by α g(x) + βf(x) in Prop 2.1
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From this proposition, together with the above definition of an efficient solution, we get the
following criteria for deciding whether a vector x̂ is an efficient solution or not:

Prop 3.2: x̂ ∈ X is an efficient solution if and only if there are constants α > 0 and β > 0
such that the conditions (3.7)–(3.8) are satisfied for each j = 1, . . . , n.

The following result shows that each efficient solution is in fact an optimal solution to two
particular optimization problems.

Prop 3.3: Assume that x̂ ∈ X is an efficient solution, and let ĝ = g(x̂) and f̂ = f(x̂).
Then x̂ is an optimal solution to both the following optimization problems:

minimize f(x) subject to g(x) ≤ ĝ , x ∈ X. (3.9)

minimize g(x) subject to f(x) ≤ f̂ , x ∈ X. (3.10)

Proof: If x̂ is an efficient solution then there are constants α > 0 and β > 0 such that

α g(x̂) + βf(x̂) ≤ α g(x) + βf(x), for all x ∈ X. (3.11)

First, take an arbitrary x ∈ X such that g(x) ≤ ĝ. Then, according to (3.11), it holds that

f(x̂) − f(x) ≤ (α/β)(g(x) − g(x̂)) = (α/β)(g(x) − ĝ) ≤ 0, (3.12)

which implies that x̂ is an optimal solution to (3.9).

Next, take an arbitrary x ∈ X such that f(x) ≤ f̂ . Then, according to (3.11), it holds that

g(x̂) − g(x) ≤ (β/α)(f(x) − f(x̂)) = (β/α)(f(x) − f̂) ≤ 0, (3.13)

which implies that x̂ is an optimal solution to (3.10).

Important note:

Since the constants α and β are assumed to be > 0, and since x̂ minimizes α g(x) + βf(x) if
and only if x̂ minimizes g(x)+(β/α)f(x), (and if and only if x̂ minimizes (α/β) g(x)+f(x)),
we may without loss of generality assume that α = 1 everywhere above (or, alternatively,
that β = 1 everywhere above). This is sometimes done in applications of this theory.
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4. Marginal allocation algorithm for generating efficient solutions

We will now describe a surprisingly simple algorithm for determining the efficient curve
described above, but first we repeat the assumptions that f is integer-convex and strictly
decreasing in each variable, while g is integer-convex and strictly increasing in each variable.

The algorithm start from x(0) = 0 (which is an efficient solution) and generates efficient
solutions x(1),x(2),x(3), . . . “from left to right”, which means that each new generated point
has a higher value on g(x) but a lower value on f(x) than the previously generated point.
Throughout the algorithm x(k) denotes the k:th generated efficient solution.
The algorithm terminates when there is no longer any efficient solution with g(x) ≤ gmax.

Step 0:

Generate a table with n columns as follows. For j = 1, . . . , n, fill the j:th column from the
top and down with the quotients −∆fj(0)/∆gj(0), −∆fj(1)/∆gj(1), −∆fj(2)/∆gj(2), etc...
(A moderate number of quotients will suffice, additional quotients can be calculated as
needed.) Note that the quotients are positive and strictly decreasing in each column.
Set k = 0, x(0) = (0, . . . , 0)T, g(x(0)) = g(0) and f(x(0)) = f(0).
Let all the quotients in the table be uncanceled.

Step 1:

Select the largest uncanceled quotient in the table (if there are several equally large, choose
one of these arbitrarily). Cancel this quotient and let ℓ be the number of the column from
which the quotient was canceled.

Step 2:

Let k := k + 1. Then let x
(k)
ℓ = x

(k−1)
ℓ + 1 and x

(k)
j = x

(k−1)
j for all j 6= ℓ.

Further, calculate f(x(k)) = f(x(k−1))+∆fℓ(x
(k−1)
ℓ ) and g(x(k)) = g(x(k−1))+∆gℓ(x

(k−1)
ℓ ).

If g(x(k)) ≥ gmax, terminate the algorithm. Otherwise, go to Step 1.

Note that each generated solution x(k) differs from the previously generated solution x(k−1)

in just one component. The name of the algorithm stems from the fact that

−∆fj(xj)

∆gj(xj)
=

decrease in f(x) if xj is increased by 1

increase in g(x) if xj is increased by 1
.

Hence, in each step of the algorithm, we increase the xj which gives marginally the largest
decrease in f(x) per increase in g(x).

Prop 4.1: Each generated solution x(k) is an efficient solution.

Proof: Consider a given generated solution x(k). Choose α > 0 and β > 0 such that α/β =
the quotient that was canceled in Step 1 immediately before x(k) was generated in Step 2.
Then all canceled quotients are ≥ α/β, while all uncanceled quotients are ≤ α/β. But then
x(k) and α/β satisfy conditions (3.7)–(3.8) for each j = 1, . . . , n, which implies that x(k) is
an efficient solution.
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Prop 4.2: Assume that all quotients −∆fj(xj)/∆gj(xj) in the original table are different.
Then the algorithm generates all efficient solutions which satisfy g(x) ≤ gmax.

Proof: Assume that x̂ is an efficient solution. Then the conditions (3.7)–(3.8) are satisfied
for some α/β. But if all quotients are different, then α/β can be perturbed such that all
inequalities in (3.7)–(3.8) becomes strict inequalities, so that, for each j = 1, . . . , n,

−∆fj(xj)

∆gj(xj)
<

α

β
if xj ≥ x̂j , (4.1)

−∆fj(xj)

∆gj(xj)
>

α

β
if xj < x̂j . (4.2)

These conditions determine x̂ uniquely. However, this solution will actually be generated
by the algorithm in the stage where the latest canceled quotient is > α/β, while the largest
quotient that has not yet been canceled is < α/β.

5. An important special case

Assume that gj(xj) = cxj , where c is a positive constant which do not depend on j, so that

g(x) = c

n∑

j=1

xj . (5.1)

Then the generated efficient points satisfy g(x(k)) = c k, for k = 1, 2, . . .

It then follows from Prop 3.3 that, for each k ∈ N , x(k) is an optimal solution to the problem

minimize f(x) subject to g(x) ≤ c k , x ∈ X. (5.2)

Moreover, since g(x)/c =
∑

j xj ∈ N for all x ∈ X, it follows that if the constant bk satisfies

c k ≤ bk < c (k+1), then x(k) is an optimal solution also to the problem

minimize f(x) subject to g(x) ≤ bk , x ∈ X. (5.3)

Thus, for any right hand side b > 0, we can solve the problem

minimize f(x) subject to g(x) ≤ b , x ∈ X. (5.4)

Just let k be obtained by rounding b/c downwards to the nearest integer. Then x(k) is an
optimal solution.
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