
Lecture: NLP with equality constraints

1. Nonlinear Programming with equality constraints.

2. Optimality conditions
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General nonlinear problems under equality constraints

The general problem is

minimize f(x)

s.t. hi(x) = 0, i = 1, . . . ,m
(1)

The feasible region F = {x ∈ Rn : hi(x) = 0, i = 1, . . . ,m} is in

general not convex.

We will start by considering a simpler convex case, namely, the case

when the functions hi are affine, i.e., hi(x) = aT
i x+ bi. We assume that

n > m.

The feasible region F = {x ∈ Rn : Ax = b, } is now convex, and we

assume that the rows of A are linearly independent.
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NLP with linear equality constraints

Use a nullspace method to solve

minimize f(x)

s.t. Ax = b,
(2)

If x̄ is an arbitrary feasible point, then any x ∈ F can be written

x = x̄+ Zv where the columns of Z span the nullspace of A.

(2) is equivalent to minimize ϕ(v) = f(x̄+ Zv) s.t. v ∈ Rn−m.

The first order optimality condition is

∇vf(v) = ∇xf(x̄+ Zv)∇v(x̄+ Zv) = ∇xf(x̄+ Zv)Z = 0
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NLP with linear equality constraints

A Lagrange approach

Know: ∇f(x∗)
T ∈ Rn = N (A)⊕R(AT ),

so ∇f(x∗)
T = Zv∗ +ATλ∗ for some vectors v∗ and λ∗.

If x∗ is a local minimum, we know ZT∇f(x∗)
T = 0,

i.e. ZT (Zv∗ +ATλ∗) = ZTZv∗ + ZTAT

︸ ︷︷ ︸

=0

λ∗ = 0.

So ZTZv∗ = 0, hence Zv∗ = 0 and then ∇f(x∗)
T = ATλ∗ must hold at

a local minimum for (2).

Per Enqvist 4 NLP with equality constraints



NLP under general equality constraints

Consider again the general problem

minimize f(x)

s.t. hi(x) = 0, i = 1, . . . ,m
(3)

For the linear case we assumed that the rows of A where linearly

independent, now we need the following technical assumption:

Definition 1. A feasible solution x ∈ F is a regular point to (1) if

∇hi(x), i = 1, . . . ,m are linearly independent.
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Theorem 1 (Lagrange’s optimality conditions). Assume that x̂ ∈ F is a

regular point and a local optimal solution to (1). Then there exists

û ∈ Rm such that

(1) ∇f(x̂) +
m∑

i=1

ûi∇hi(x̂) = 0T,

(2) hi(x̂) = 0, i = 1, . . . ,m.

Proof idea: Let x(t) be an arbitrary parameterized curve in the feasible

set F = {x ∈ Rn : hi(x) = 0, i = 1, . . . ,m} such that x(0) = x̂. The

figure on the next page illustrates how this curve is mapped on a curve

f(x(t)) on the range space of the objective function. The feasible set F
is in general of higher dimension than one, which is illustrated in the

right figure.
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Since x(0) = x̂ is a local optimal solution it holds that

d

dt
f(x(t))|t=0 = ∇f(x̂) · x′(0) = 0

Furthermore, x(t) ∈ F , which leads to

hi(x(t)) = 0, i = 1, . . . ,m, ∀t ∈ (−ǫ, ǫ)

for some ǫ > 0.
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This means that

d

dt
hi(x(t))|t=0 = ∇hi(x̂) · x′(0) = 0, i = 1, . . . ,m

which in turn leads to x′(0) ∈ N (A), where

A =







∇h1(x̂)
...

∇hm(x̂)







Conversely, the implicit function theorem can be used to show that if

p ∈ N (A), then there exists a parameterized curve x(t) ∈ F with

x(0) = x̂ and x′(0) = p.
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Alltogether, the above argument shows that

∇f(x̂)p = 0, ∀p ∈ N (A)

⇔ ∇f(x̂)T ∈ N (A)⊥ = R(AT)

⇔ ∇f(x̂)T = ATv̂,

for some v̂ ∈ Rm. If we let û = −v̂ ∈ Rm the last expression can be

written

∇f(x̂) +
m∑

i=1

ûi∇hi(x̂) = 0T

which was to be proven.
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Example

Consider

minimize f(x)

s.t. h(x) = 0,
(4)

where f(x) = x1x2 − log |x1| and h(x) = x1 − x2 − 2.

The constraint is linear and can be written Ax = b, where

A =
[

1 −1
]

, b = 2, and Z =




1

1





the matrix Z spans the nullspace of A

Then ∇f(x) =
[

x2 − 1/x1 x1

]

We want to determine optimality conditions and find all points satisfying

them.
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Example - Nullspace method

The reduced gradient is given by

ZT∇f(x)T =
[

1 1
]




x2 − 1/x1

x1



 = x2 − 1/x1 + x1.

Setting it equal to zero and using that x2 = x1 − 2, we get

x2
1 − x1 − 1/2 = 0, with solutions

x(1) = (
1 +

√
3

2
,
−3 +

√
3

2
), x(2) = (

1−
√
3

2
,
−3−

√
3

2
).

We get

f(x(1)) > f(x(2)),

so x(2) is the best stationary point.

Per Enqvist 11 NLP with equality constraints



Example - Lagrange method

We check that x(1) and x(2) satisfy the conditions

∇f(x(k))T + λk∇h(x(k))T = 0 for some λk when k = 1, 2.

∇f(x(1))T + λ1∇h(x(1))T =




−1+

√
3

2

1+
√
3

2



+ λ1




1

−1





︸ ︷︷ ︸

=AT

= 0

which is satisfied for λ1 =
1+

√
3

2
.

∇f(x(2))T + λ2∇h(x(2))T =




−1−

√
3

2

1−
√
3

2



+ λ1




1

−1





︸ ︷︷ ︸

=AT

= 0

which is satisfied for λ2 =
1−

√
3

2
.
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Example - Graphical illustration

The function f is depicted below, in R2 (left), for feasible points (right).
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