Lecture: NLP with equality constraints

1. Nonlinear Programming with equality constraints.
2. Optimality conditions

General nonlinear problems under equality constraints

The general problem is

$$
\begin{align*}
\operatorname{minimize} & f(\mathbf{x}) \tag{1}\\
\text { s.t. } & h_{i}(\mathbf{x})=0, i=1, \ldots, m
\end{align*}
$$

The feasible region $\mathcal{F}=\left\{\mathbf{x} \in \mathbf{R}^{n}: h_{i}(\mathbf{x})=0, i=1, \ldots, m\right\}$ is in general not convex.

We will start by considering a simpler convex case, namely, the case when the functions h_{i} are affine, i.e., $h_{i}(\mathbf{x})=\mathbf{a}_{i}^{\top} \mathbf{x}+b_{i}$. We assume that $n>m$.

The feasible region $\mathcal{F}=\left\{\mathbf{x} \in \mathbf{R}^{n}: \mathbf{A x}=\mathbf{b},\right\}$ is now convex, and we assume that the rows of \mathbf{A} are linearly independent.

NLP with linear equality constraints

Use a nullspace method to solve

$$
\begin{align*}
\operatorname{minimize} & f(\mathbf{x}) \tag{2}\\
\text { s.t. } & \mathbf{A x}=b,
\end{align*}
$$

If $\overline{\mathrm{x}}$ is an arbitrary feasible point, then any $\mathrm{x} \in \mathcal{F}$ can be written $\mathbf{x}=\overline{\mathbf{x}}+Z v$ where the columns of Z span the nullspace of \mathbf{A}.
(2) is equivalent to minimize $\varphi(v)=f(\overline{\mathbf{x}}+Z v)$ s.t. $v \in \mathbf{R}^{n-m}$.

The first order optimality condition is

$$
\nabla_{v} f(v)=\nabla_{x} f(\overline{\mathbf{x}}+Z v) \nabla_{v}(\overline{\mathbf{x}}+Z v)=\nabla_{x} f(\overline{\mathbf{x}}+Z v) Z=0
$$

NLP with linear equality constraints

A Lagrange approach

Know: $\nabla f\left(x_{*}\right)^{T} \in \mathbf{R}^{n}=\mathcal{N}(\mathbf{A}) \oplus \mathcal{R}\left(\mathbf{A}^{T}\right)$,
so $\nabla f\left(x_{*}\right)^{T}=Z v_{*}+\mathbf{A}^{T} \lambda_{*}$ for some vectors v_{*} and λ_{*}.
If x_{*} is a local minimum, we know $Z^{T} \nabla f\left(x_{*}\right)^{T}=0$, i.e. $Z^{T}\left(Z v_{*}+\mathbf{A}^{T} \lambda_{*}\right)=Z^{T} Z v_{*}+\underbrace{Z^{T} \mathbf{A}^{T}}_{=0} \lambda_{*}=0$.

So $Z^{T} Z v_{*}=0$, hence $Z v_{*}=0$ and then $\nabla f\left(x_{*}\right)^{T}=\mathbf{A}^{T} \lambda_{*}$ must hold at a local minimum for (2).

NLP under general equality constraints

Consider again the general problem

$$
\begin{align*}
\operatorname{minimize} & f(\mathbf{x}) \tag{3}\\
\text { s.t. } & h_{i}(\mathbf{x})=0, i=1, \ldots, m
\end{align*}
$$

For the linear case we assumed that the rows of \mathbf{A} where linearly independent, now we need the following technical assumption:

Definition 1. A feasible solution $\mathrm{x} \in \mathcal{F}$ is a regular point to (1) if $\nabla h_{i}(\mathrm{x}), i=1, \ldots, m$ are linearly independent.

Theorem 1 (Lagrange's optimality conditions). Assume that $\hat{\mathrm{x}} \in \mathcal{F}$ is a regular point and a local optimal solution to (1). Then there exists $\hat{\mathbf{u}} \in \mathbf{R}^{m}$ such that
(1) $\nabla f(\hat{\mathbf{x}})+\sum_{i=1}^{m} \hat{u}_{i} \nabla h_{i}(\hat{\mathbf{x}})=\mathbf{0}^{\top}$,
(2) $h_{i}(\hat{\mathrm{x}})=0, i=1, \ldots, m$.

Proof idea: Let $\mathbf{x}(t)$ be an arbitrary parameterized curve in the feasible set $\mathcal{F}=\left\{\mathbf{x} \in \mathbf{R}^{n}: h_{i}(\mathbf{x})=0, i=1, \ldots, m\right\}$ such that $\mathbf{x}(0)=\hat{\mathbf{x}}$. The figure on the next page illustrates how this curve is mapped on a curve $f(\mathrm{x}(t))$ on the range space of the objective function. The feasible set \mathcal{F} is in general of higher dimension than one, which is illustrated in the right figure.

Since $\mathrm{x}(0)=\hat{\mathrm{x}}$ is a local optimal solution it holds that

$$
\left.\frac{d}{d t} f(\mathrm{x}(t))\right|_{t=0}=\nabla f(\hat{\mathbf{x}}) \cdot \mathbf{x}^{\prime}(0)=0
$$

Furthermore, $\mathbf{x}(t) \in \mathcal{F}$, which leads to

$$
h_{i}(\mathbf{x}(t))=0, \quad i=1, \ldots, m, \quad \forall t \in(-\epsilon, \epsilon)
$$

for some $\epsilon>0$.

This means that

$$
\left.\frac{d}{d t} h_{i}(\mathbf{x}(t))\right|_{t=0}=\nabla h_{i}(\hat{\mathbf{x}}) \cdot \mathbf{x}^{\prime}(0)=0, \quad i=1, \ldots, m
$$

which in turn leads to $\mathrm{x}^{\prime}(0) \in \mathcal{N}(\mathbf{A})$, where

$$
\mathbf{A}=\left[\begin{array}{c}
\nabla h_{1}(\hat{\mathbf{x}}) \\
\vdots \\
\nabla h_{m}(\hat{\mathbf{x}})
\end{array}\right]
$$

Conversely, the implicit function theorem can be used to show that if $\mathbf{p} \in \mathcal{N}(\mathbf{A})$, then there exists a parameterized curve $\mathbf{x}(t) \in \mathcal{F}$ with $\mathrm{x}(0)=\hat{\mathrm{x}}$ and $\mathrm{x}^{\prime}(0)=\mathrm{p}$.

Alltogether, the above argument shows that

$$
\begin{array}{ll}
& \nabla f(\hat{\mathbf{x}}) \mathbf{p}=0, \quad \forall \mathbf{p} \in \mathcal{N}(\mathbf{A}) \\
\Leftrightarrow & \nabla f(\hat{\mathbf{x}})^{\top} \in \mathcal{N}(\mathbf{A})^{\perp}=\mathcal{R}\left(\mathbf{A}^{\top}\right) \\
\Leftrightarrow & \nabla f(\hat{\mathbf{x}})^{\top}=\mathbf{A}^{\top} \hat{\mathbf{v}},
\end{array}
$$

for some $\hat{\mathbf{v}} \in \mathbf{R}^{m}$. If we let $\hat{\mathbf{u}}=-\hat{\mathbf{v}} \in \mathbf{R}^{m}$ the last expression can be written

$$
\nabla f(\hat{\mathbf{x}})+\sum_{i=1}^{m} \hat{u}_{i} \nabla h_{i}(\hat{\mathbf{x}})=\mathbf{0}^{\top}
$$

which was to be proven.

Example

Consider

$$
\begin{align*}
\operatorname{minimize} & f(\mathrm{x}) \tag{4}\\
\text { s.t. } & h(\mathrm{x})=0,
\end{align*}
$$

where $f(x)=x_{1} x_{2}-\log \left|x_{1}\right|$ and $h(x)=x_{1}-x_{2}-2$.
The constraint is linear and can be written $\mathbf{A x}=\mathbf{b}$, where

$$
\mathbf{A}=\left[\begin{array}{ll}
1 & -1
\end{array}\right], \quad \mathbf{b}=2, \text { and } Z=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

the matrix Z spans the nullspace of A
Then $\nabla f(\mathrm{x})=\left[\begin{array}{ll}x_{2}-1 / x_{1} & x_{1}\end{array}\right]$
We want to determine optimality conditions and find all points satisfying them.

Example - Nullspace method

The reduced gradient is given by

$$
Z^{T} \nabla f(\mathbf{x})^{T}=\left[\begin{array}{ll}
1 & 1
\end{array}\right]\left[\begin{array}{c}
x_{2}-1 / x_{1} \\
x_{1}
\end{array}\right]=x_{2}-1 / x_{1}+x_{1} .
$$

Setting it equal to zero and using that $x_{2}=x_{1}-2$, we get $x_{1}^{2}-x_{1}-1 / 2=0$, with solutions

$$
\mathrm{x}^{(1)}=\left(\frac{1+\sqrt{3}}{2}, \frac{-3+\sqrt{3}}{2}\right), \quad \mathrm{x}^{(2)}=\left(\frac{1-\sqrt{3}}{2}, \frac{-3-\sqrt{3}}{2}\right) .
$$

We get

$$
f\left(\mathrm{x}^{(1)}\right)>f\left(\mathrm{x}^{(2)}\right),
$$

so $\mathrm{x}^{(2)}$ is the best stationary point.

Example - Lagrange method

We check that $\mathbf{x}^{(1)}$ and $\mathbf{x}^{(2)}$ satisfy the conditions
$\nabla f\left(\mathbf{x}^{(k)}\right)^{T}+\lambda_{k} \nabla h\left(\mathbf{x}^{(k)}\right)^{T}=0$ for some λ_{k} when $k=1,2$.

$$
\nabla f\left(\mathbf{x}^{(1)}\right)^{T}+\lambda_{1} \nabla h\left(\mathbf{x}^{(1)}\right)^{T}=\left[\begin{array}{c}
-\frac{1+\sqrt{3}}{2} \\
\frac{1+\sqrt{3}}{2}
\end{array}\right]+\lambda_{1} \underbrace{\left[\begin{array}{c}
1 \\
-1
\end{array}\right]}_{=\mathbf{A}^{T}}=0
$$

which is satisfied for $\lambda_{1}=\frac{1+\sqrt{3}}{2}$.

$$
\nabla f\left(\mathbf{x}^{(2)}\right)^{T}+\lambda_{2} \nabla h\left(\mathbf{x}^{(2)}\right)^{T}=\left[\begin{array}{c}
-\frac{1-\sqrt{3}}{2} \\
\frac{1-\sqrt{3}}{2}
\end{array}\right]+\lambda_{1} \underbrace{\left[\begin{array}{c}
1 \\
-1
\end{array}\right]}_{=\mathbf{A}^{T}}=0
$$

which is satisfied for $\lambda_{2}=\frac{1-\sqrt{3}}{2}$.

Example - Graphical illustration

The function f is depicted below, in \mathbf{R}^{2} (left), for feasible points (right).

