Lecture: KKT conditions for NLP with inequality constraints

1. KKT conditions for general nonlinear optimization problems with inequality constraints.

General nonlinear optimization problems with inequality constraints
Consider

$$
\left(N L P_{\leq}\right)\left[\begin{array}{rl}
\text { minimize } & f(\mathrm{x}) \\
\text { s.t. } & g_{i}(\mathrm{x}) \leq 0, i=1, \ldots, m
\end{array}\right]
$$

where $f(\mathbf{x})$ and $g_{i}(\mathbf{x})$ are real valued functions.
The feasible region is given by

$$
\mathcal{F}=\left\{\mathbf{x} \in \mathbf{R}^{n}: g_{i}(\mathbf{x}) \leq 0, i=1, \ldots, m\right\}
$$

We want to derive necessary optimality conditions.
Definition 1. For $\mathrm{x} \in \mathcal{F}$ we let $\mathcal{I}_{a}(\mathrm{x})$ denote the index set for active constraints in the point \mathbf{x}, i.e., $\mathcal{I}_{a}(\mathbf{x})=\left\{i \in\{1, \ldots, m\}: g_{i}(\mathbf{x})=0\right\}$.

Regularity for $\left(N L P_{\leq}\right)$

We will look at optimality conditions that will hold in all points except those that are not regular, so we want to have as few points as possible that are not regular.

First attempt:
Definition 2. A feasible solution $\mathrm{x} \in \mathcal{F}$ is a regular point to $\left(N L P_{\leq}\right)$if $\nabla g_{i}(\mathbf{x})$ for $i \in \mathcal{I}_{a}(\mathbf{x})$ are linearly independent.

With a stronger condition we can get optimality conditions that are applicable for more problems.

Regularity for $\left(N L P_{\leq}\right)$

The regularity condition in Definition 2 can be replaced with the stronger condition:
Definition 3. A feasible solution $\mathrm{x} \in \mathcal{F}$ with $\mathcal{I}_{a}(\mathrm{x})$ non-empty is a regular point to $\left(N L P_{\leq}\right)$if there does not exist scalars $v_{i} \geq 0$, $i \in \mathcal{I}_{a}(\mathrm{x})$, such that

$$
\sum_{i \in \mathcal{I}_{a}(\mathbf{x})} v_{i}>0
$$

and

$$
\sum_{i \in \mathcal{I}_{a}(\mathbf{x})} v_{i} \nabla g_{i}(\mathbf{x})=0
$$

A feasible point with $\mathcal{I}_{a}(\mathrm{x})$ empty is always a regular point.

Theorem 1 (KKT for general problems with inequality constraints). Assume that $\hat{\mathrm{x}}$ is a regular point to $\left(N L P_{\leq}\right)$and a local optimal solution.
Then there exists a vector $\hat{\mathbf{y}} \in \mathbf{R}^{m}$ such that
(1) $\nabla f(\hat{\mathbf{x}})+\hat{\mathbf{y}}^{T} \nabla \mathrm{~g}(\hat{\mathbf{x}})=\mathbf{0}^{\top}$
(2) $g(\hat{x}) \leq 0$,
(3) $\hat{\mathbf{y}} \geq 0$,
(4) $\hat{\mathbf{y}}^{T} \mathbf{g}(\hat{\mathrm{x}})=0$.

The conditions (1) - (4) can be made more explicit. We have that

$$
\hat{\mathbf{y}}^{\top} \mathbf{g}(\hat{\mathbf{x}})=\sum_{i=1}^{m} \hat{y}_{i} g_{i}(\hat{\mathbf{x}})=0
$$

Since $g_{i}(\hat{\mathbf{x}}) \leq 0$ and $\hat{y}_{i} \geq 0$ it follows that $\hat{y}_{i} g_{i}(\hat{\mathbf{x}})=0, i=1, \ldots, m$.
We then get the equivalent conditions
$\left(2^{\prime}\right) g_{i}(\hat{\mathrm{x}}) \leq 0, i=1, \ldots, m$,
(3') $\hat{y}_{i} \geq 0, i=1, \ldots, m$,
$\left(4^{\prime}\right) \hat{y}_{i} \cdot g_{i}(\hat{\mathbf{x}})=0, i=1, \ldots, m$.

Theorem 2 (KKT for general problems with inequality constraints). Assume that $\hat{\mathrm{x}}$ is a regular point to $\left(N L P_{\leq}\right)$and a local optimal solution.
Then there exists a vector $\hat{\mathbf{y}} \in \mathbf{R}^{m}$ such that
(1') $\nabla f(\hat{\mathbf{x}})+\sum_{i=1}^{m} \hat{\mathbf{y}}_{i} \nabla g_{i}(\hat{\mathbf{x}})=\mathbf{0}^{\top}$
$\left(2^{\prime}\right) g_{i}(\hat{\mathrm{x}}) \leq 0, i=1, \ldots, m$,
(3') $\hat{\mathbf{y}}_{i} \geq 0, i=1, \ldots, m$,
$\left(4^{\prime}\right) \hat{\mathbf{y}}_{i} \cdot g_{i}(\hat{\mathbf{x}})=0, i=1, \ldots, m$.

Geometric interpretation

The complementarity condition (4') implies that if $g_{i}(\hat{\mathbf{x}})<0$ then $y_{i}=0$. Therefore, condition (1^{\prime}) can be written

$$
\nabla f(\hat{\mathbf{x}})=-\sum_{i: g_{i}(\hat{\mathbf{x}})=0} \hat{y}_{i} \nabla g_{i}(\hat{\mathbf{x}})
$$

this means that the gradient is a negative linear combination of the gradients of the binding (active) constraints.

An example

$$
\begin{aligned}
\operatorname{minimize} & \left(x_{1}-3\right)^{2}+\left(x_{2}-2\right)^{2} \\
\text { s.t. } & 2 x_{1}+x_{2}-6 \leq 0 \\
& x_{1}+2 x_{2}-6 \leq 0
\end{aligned}
$$

Here $f(\mathrm{x})=\left(x_{1}-3\right)^{2}+\left(x_{2}-2\right)^{2}$,
$g_{1}(\mathbf{x})=2 x_{1}+x_{2}-6$ and $g_{2}(\mathbf{x})=x_{1}+2 x_{2}-6$, then

$$
\begin{gathered}
\nabla f(\mathbf{x})=\left[\begin{array}{ll}
2\left(x_{1}-3\right) & 2\left(x_{2}-2\right)
\end{array}\right] \\
\nabla g_{1}(\mathbf{x})=\left[\begin{array}{ll}
2 & 1
\end{array}\right], \quad \nabla g_{2}(\mathbf{x})=\left[\begin{array}{ll}
1 & 2
\end{array}\right] .
\end{gathered}
$$

The gradients of g are linearly independent so all points are regular.

Solving the KKT-conditions

We can determine all solutions to the KKT-conditions by considering all combinations of active and non-active constraints.
(practical only on small problems)

Four cases:

1. No constraints active $\mathcal{I}_{a}(\mathrm{x})=\emptyset$,
i.e. $g_{1}(\mathbf{x})<0$ and $g_{2}(\mathbf{x})<0$.
2. First active and second not-active $\mathcal{I}_{a}(\mathrm{x})=\{1\}$, i.e. $g_{1}(\mathbf{x})=0$ and $g_{2}(\mathbf{x})<0$.
3. First not-active and second active $\mathcal{I}_{a}(\mathrm{x})=\{2\}$,
i.e. $g_{1}(\mathrm{x})<0$ and $g_{2}(\mathrm{x})=0$.
4. Both constraints active $\mathcal{I}_{a}(\mathrm{x})=\{1,2\}$,
i.e. $g_{1}(\mathbf{x})=0$ and $g_{2}(\mathbf{x})=0$.

Case 1: $\mathcal{I}_{a}(\mathrm{x})=\emptyset$

From $\operatorname{KKT}(4)$ we get that both $y_{1}=0$ and $y_{2}=0$.
Then, $\operatorname{KKT}(1)$ is

$$
\nabla f(\mathrm{x})=\left[\begin{array}{ll}
2\left(x_{1}-3\right) & 2\left(x_{2}-2\right)
\end{array}\right]=0
$$

which implies that $x_{1}=3$ and $x_{2}=2$.

But since $\operatorname{KKT}(2)$ is not satisifed, $2 x_{1}+x_{2}-6=2 \not \approx 0$, (i.e. \mathbf{x} is not feasible) for these values of x , it can not be a local minimum.

Case 2: $\mathcal{I}_{a}(\mathrm{x})=\{1\}$

From $\operatorname{KKT}(4)$ we get that $y_{2}=0$. Then $\operatorname{KKT}(1)$ is

$$
\nabla f(\mathbf{x})+y_{1} \nabla g_{1}(\mathbf{x})=\left[\begin{array}{ll}
2\left(x_{1}-3\right) & 2\left(x_{2}-2\right)
\end{array}\right]+y_{1}\left[\begin{array}{ll}
2 & 1
\end{array}\right]=0
$$

which implies that $x_{1}=3-y_{1}$ and $x_{2}=2-y_{1} / 2$.
The assumption $g_{1}(\mathbf{x})=0$ gives now with these x_{1} and x_{2}

$$
2\left(3-y_{1}\right)+\left(2-y_{1} / 2\right)-6=0 \quad \Rightarrow \quad y_{1}=4 / 5
$$

Tis y_{1} (and y_{2}) satisfies $\operatorname{KKT}(3)$, and then we get
$x_{1}=3-4 / 5=11 / 5$ and $x_{2}=2-1 / 2(4 / 5)=8 / 5$.
Finally, $g_{2}(\mathrm{x})=11 / 5+2(8 / 5)-6=-3 / 5 \leq 0$ so $\operatorname{KKT}(2)$ is satisfied.
All KKT-conditions are satisfied!

Case 3: $\mathcal{I}_{a}(\mathrm{x})=\{2\}$

From $\operatorname{KKT}(4)$ we get $y_{1}=0$. Then $\operatorname{KKT}(1)$ gives that

$$
\nabla f(\mathbf{x})+y_{2} \nabla g_{2}(\mathbf{x})=\left[\begin{array}{ll}
2\left(x_{1}-3\right) & 2\left(x_{2}-2\right)
\end{array}\right]+y_{2}\left[\begin{array}{ll}
1 & 2
\end{array}\right]=0
$$

hence $x_{1}=3-y_{2} / 2$ and $x_{2}=2-y_{2}$.

The assumption $g_{2}(\mathbf{x})=0$ gives now, with these x_{1} and x_{2}

$$
\left(3-y_{2} / 2\right)+2\left(2-y_{2}\right)-6=0 \quad \Rightarrow \quad y_{2}=2 / 5
$$

This y_{2} (and y_{1}) satisfies $\operatorname{KKT}(3)$, and then
$x_{1}=3-1 / 5=14 / 5$ and $x_{2}=2-(2 / 5)=8 / 5$.
Finally, $g_{1}(\mathrm{x})=2(14 / 5)+8 / 5-6=1 / 5>0$ so $\operatorname{KKT}(2)$ is not satisfied.

Case 4: $\mathcal{I}_{a}(\mathrm{x})=\{1,2\}$

The assumption $g_{1}(\mathrm{x})=2 x_{1}+x_{2}-6=0$ and
$g_{2}(\mathbf{x})=x_{1}+2 x_{2}-6=0$ gives that $x_{1}=2$ and $x_{2}=2$.
$\mathrm{KKT}(1)$ says that $\nabla f(\mathrm{x})+y_{1} \nabla g_{1}(\mathbf{x})+y_{2} \nabla g_{2}(\mathbf{x})=0$,

$$
\left[\begin{array}{ll}
2\left(x_{1}-3\right) & 2\left(x_{2}-2\right)
\end{array}\right]+y_{1}\left[\begin{array}{ll}
2 & 1
\end{array}\right]+y_{2}\left[\begin{array}{ll}
1 & 2
\end{array}\right]=0
$$

with x_{1} and x_{2} inserted giving $-2+2 y_{1}+y_{2}=0$ and $y_{1}+2 y_{2}=0$, so $y_{1}=-2 / 3$ and $y_{2}=4 / 3$.

But this y does not satisfy $\mathrm{KKT}(3)$ so it can not be a local minimum.

Graphical illustration

The four "solutions" are depicted in the figure. As we saw above, it is only number 2 that satisfies all the KKT-constraints.

Case 2

Here we can see that minus the gradient to f is a positive linear combination of (the gradient of) the one active constraint.

Case 4

Here we can see that minus the gradient to f is not a positive linear combination of the (gradients of the) active constraints.

