
Lecture: KKT conditions for NLP with inequality constraints

1. KKT conditions for general nonlinear optimization problems with

inequality constraints.
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General nonlinear optimization problems with inequality constraints

Consider

(NLP≤)





minimize f(x)

s.t. gi(x) ≤ 0, i = 1, . . . ,m





where f(x) and gi(x) are real valued functions.

The feasible region is given by

F = {x ∈ Rn : gi(x) ≤ 0, i = 1, . . . ,m}

We want to derive necessary optimality conditions.

Definition 1. For x ∈ F we let Ia(x) denote the index set for active

constraints in the point x, i.e., Ia(x) = {i ∈ {1, . . . ,m} : gi(x) = 0}.
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Regularity for (NLP≤)

We will look at optimality conditions that will hold in all points except

those that are not regular, so we want to have as few points as possible

that are not regular.

First attempt:

Definition 2. A feasible solution x ∈ F is a regular point to (NLP≤) if

∇gi(x) for i ∈ Ia(x) are linearly independent.

With a stronger condition we can get optimality conditions that are

applicable for more problems.
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Regularity for (NLP≤)

The regularity condition in Definition 2 can be replaced with the

stronger condition:

Definition 3. A feasible solution x ∈ F with Ia(x) non-empty is a

regular point to (NLP≤) if there does not exist scalars vi ≥ 0,

i ∈ Ia(x), such that
∑

i∈Ia(x)

vi > 0

and
∑

i∈Ia(x)

vi∇gi(x) = 0.

A feasible point with Ia(x) empty is always a regular point.
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Theorem 1 (KKT for general problems with inequality constraints).

Assume that x̂ is a regular point to (NLP≤) and a local optimal

solution.

Then there exists a vector ŷ ∈ Rm such that

(1) ∇f(x̂) + ŷT∇g(x̂) = 0T

(2) g(x̂) ≤ 0,

(3) ŷ ≥ 0,

(4) ŷTg(x̂) = 0.
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The conditions (1) − (4) can be made more explicit. We have that

ŷTg(x̂) =
m

∑

i=1

ŷigi(x̂) = 0

Since gi(x̂) ≤ 0 and ŷi ≥ 0 it follows that ŷigi(x̂) = 0, i = 1, . . . ,m.

We then get the equivalent conditions

(2′) gi(x̂) ≤ 0, i = 1, . . . ,m,

(3′) ŷi ≥ 0, i = 1, . . . ,m,

(4′) ŷi · gi(x̂) = 0, i = 1, . . . ,m.
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Theorem 2 (KKT for general problems with inequality constraints).

Assume that x̂ is a regular point to (NLP≤) and a local optimal

solution.

Then there exists a vector ŷ ∈ Rm such that

(1′) ∇f(x̂) +
∑m

i=1 ŷi∇gi(x̂) = 0T

(2′) gi(x̂) ≤ 0, i = 1, . . . ,m,

(3′) ŷi ≥ 0, i = 1, . . . ,m,

(4′) ŷi · gi(x̂) = 0, i = 1, . . . ,m.
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Geometric interpretation

The complementarity condition (4′) implies that if gi(x̂) < 0 then

yi = 0. Therefore, condition (1′) can be written

∇f(x̂) = −
∑

i:gi(x̂)=0

ŷi∇gi(x̂)

this means that the gradient is a negative linear combination of the

gradients of the binding (active) constraints.

∇f(x̂)
∇f(x̂)

∇g1(x̂)
∇g2(x̂)

∇g2(x̂)

∇f(x̂) = 0
T

x̂

x̂

x̂
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An example

minimize (x1 − 3)2 + (x2 − 2)2

s.t. 2x1 + x2 − 6 ≤ 0,

x1 + 2x2 − 6 ≤ 0

Here f(x) = (x1 − 3)2 + (x2 − 2)2,

g1(x) = 2x1 + x2 − 6 and g2(x) = x1 + 2x2 − 6, then

∇f(x) =
[

2(x1 − 3) 2(x2 − 2)
]

,

∇g1(x) =
[

2 1
]

, ∇g2(x) =
[

1 2
]

.

The gradients of g are linearly independent so all points are regular.
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Solving the KKT-conditions

We can determine all solutions to the KKT-conditions by considering all

combinations of active and non-active constraints.

(practical only on small problems)

Four cases:

1. No constraints active Ia(x) = ∅,

i.e. g1(x) < 0 and g2(x) < 0.

2. First active and second not-active Ia(x) = {1},

i.e. g1(x) = 0 and g2(x) < 0.

3. First not-active and second active Ia(x) = {2},

i.e. g1(x) < 0 and g2(x) = 0.

4. Both constraints active Ia(x) = {1, 2},

i.e. g1(x) = 0 and g2(x) = 0.
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Case 1: Ia(x) = ∅

From KKT(4) we get that both y1 = 0 and y2 = 0.

Then, KKT(1) is

∇f(x) =
[

2(x1 − 3) 2(x2 − 2)
]

= 0,

which implies that x1 = 3 and x2 = 2.

But since KKT(2) is not satisifed, 2x1 + x2 − 6 = 2 6≤ 0, (i.e. x is not

feasible) for these values of x, it can not be a local minimum.
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Case 2: Ia(x) = {1}

From KKT(4) we get that y2 = 0. Then KKT(1) is

∇f(x) + y1∇g1(x) =
[

2(x1 − 3) 2(x2 − 2)
]

+ y1

[

2 1
]

= 0,

which implies that x1 = 3 − y1 and x2 = 2 − y1/2.

The assumption g1(x) = 0 gives now with these x1 and x2

2(3 − y1) + (2 − y1/2) − 6 = 0 ⇒ y1 = 4/5

Tis y1 (and y2) satisfies KKT(3), and then we get

x1 = 3 − 4/5 = 11/5 and x2 = 2 − 1/2(4/5) = 8/5.

Finally, g2(x) = 11/5 + 2(8/5) − 6 = −3/5 ≤ 0 so KKT(2) is satisfied.

All KKT-conditions are satisfied!
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Case 3: Ia(x) = {2}

From KKT(4) we get y1 = 0. Then KKT(1) gives that

∇f(x) + y2∇g2(x) =
[

2(x1 − 3) 2(x2 − 2)
]

+ y2

[

1 2
]

= 0,

hence x1 = 3 − y2/2 and x2 = 2 − y2.

The assumption g2(x) = 0 gives now, with these x1 and x2

(3 − y2/2) + 2(2 − y2) − 6 = 0 ⇒ y2 = 2/5

This y2 (and y1) satisfies KKT(3), and then

x1 = 3 − 1/5 = 14/5 and x2 = 2 − (2/5) = 8/5.

Finally, g1(x) = 2(14/5)+8/5− 6 = 1/5 > 0 so KKT(2) is not satisfied.
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Case 4: Ia(x) = {1, 2}

The assumption g1(x) = 2x1 + x2 − 6 = 0 and

g2(x) = x1 + 2x2 − 6 = 0 gives that x1 = 2 and x2 = 2.

KKT(1) says that ∇f(x) + y1∇g1(x) + y2∇g2(x) = 0,
[

2(x1 − 3) 2(x2 − 2)
]

+ y1

[

2 1
]

+ y2

[

1 2
]

= 0,

with x1 and x2 inserted giving −2 + 2y1 + y2 = 0 and y1 + 2y2 = 0, so

y1 = −2/3 and y2 = 4/3.

But this y does not satisfy KKT(3) so it can not be a local minimum.

Per Enqvist 14 Lagrange relaxation and KKT conditions



Graphical illustration
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The four “solutions” are depicted in the figure. As we saw above, it is

only number 2 that satisfies all the KKT-constraints.
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Case 2
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Here we can see that minus the gradient to f is a positive linear

combination of (the gradient of) the one active constraint.
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Case 4
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Here we can see that minus the gradient to f is not a positive linear

combination of the (gradients of the) active constraints.
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