
Solutions for the exam in Optimization.
Wednesday May 29, 2013, time. 8.00–13.00

Instructor: Per Enqvist, tel. 790 62 98

There may be alternative solutions to the problem.

1. (a) The NW solution is given by

xij j = 1 j = 2 j = 3 si

i = 1 4 0 0 4

i = 2 3 1 0 4

i = 3 0 7 5 12

dj 7 8 5

The basic variables are x = (x11, x21, x22, x32, x33) = (4, 3, 1, 7, 5), which corre-
sponds to a spanning tree in the graph.

Put the node potential v3 at node sink 3 to be 0.
Then u3 − v3 = c33 = 2 gives u3 = 2.
Then u3 − v2 = c32 = 1 gives v2 = 1.
Then u2 − v2 = c33 = 2 gives u2 = 3.
Then u2 − v1 = c21 = 1 gives v1 = 2.
Then u1 − v1 = c11 = 2 gives u1 = 4.

cij , rij j = 1 j = 2 j = 3 ui

i = 1 2 0 −2 4

i = 2 1 2 −1 3

i = 3 2 1 2 2

vj 2 1 0

The reduced costs are now r12 = c12 − u1 + v2 = 0 , r13 = c13 − u1 + v3 = −2 ,
r23 = c23 − u2 + v3 = −1 and r31 = c31 − u3 + v1 = 2. Since the reduced cost
r13 is most negative the flow in x13 should be increased.

xij j = 1 j = 2 j = 3 si

i = 1 4− t 0 +t 4

i = 2 3 + t 1− t 0 4

i = 3 0 7 + t 5− t 12

dj 7 8 5

Increasing the flow in x13 to t a cycle in the graph is created and we must
compensate to get x33 = 5 − t, x32 = 7 + t, x22 = 1 − t, x21 = 3 + t, and
x11 = 4 − t. So t can become at most 1 and then x22 becomes zero and exits
the basis.
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xij j = 1 j = 2 j = 3 si

i = 1 3 0 1 4

i = 2 4 0 0 4

i = 3 0 8 4 12

dj 7 8 5

In the new flow x = (x11, x21, x13, x32, x33) = (3, 4, 1, 8, 4).

Put the node potential v3 at node sink 3 to be 0.
Then u3 − v3 = c33 = 2 gives u3 = 2.
Then u3 − v2 = c32 = 1 gives v2 = 1.
Then u1 − v3 = c13 = 2 gives u1 = 2.
Then u1 − v1 = c21 = 2 gives v1 = 0.
Then u2 − v1 = c21 = 1 gives u2 = 1.

cij , rij j = 1 j = 2 j = 3 ui

i = 1 2 0 2 2

i = 2 1 2 −1 1

i = 3 2 1 2 2

vj 0 1 0

The reduced costs are now r12 = c12 − u1 + v2 = 2 , r22 = c22 − u2 + v2 = 2 ,
r23 = c23−u2 + v3 = 1 and r31 = c31−u3 + v1 = 0. Since the reduced costs are
all non-negative the optimal value can not be increased. However, the optimal
solution is not unique, since one reduced cost is zero and the solution is not
degenerate.

(b) Perform row operations on A,

A =



1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1
−1 0 0 −1 0 0 −1 0 0
0 −1 0 0 −1 0 0 −1 0
0 0 −1 0 0 −1 0 0 −1

 ,

to get it into staircase form.



1 0 0 0 −1 −1 0 −1 −1
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1
0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1
0 0 0 0 0 0 0 0 1

 ,

Columns 1,2,3,4 and 7 are unit vectors, so the corresponding columns in A span
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the range space, i.e., the columns of

1 1 1 0 0
0 0 0 1 0
0 0 0 0 1
−1 0 0 −1 −1
0 −1 0 0 0
0 0 −1 0 0


is a basis for the range space of A.

For the nullspace, let

x1 = x5 + x6 + x8 + x9, x4 = −x5 − x6, x7 = −x8 − x9, x2 = −x5 − x8 and
x3 = −x6 − x9.
so an arbitrary vector x in the nullspace of A can be written

x =



1 1 1 1
−1 0 −1 0
0 −1 0 −1
−1 −1 0 0
1 0 0 0
0 1 0 0
0 0 −1 −1
0 0 1 0
0 0 0 1




x5
x6
x8
x9



2. (a) The standard form is

(Ps)

 min
x

cTx

s.t. Ax = b
x ≥ 0


where c = (−2 − 3 − 3 1 1 − 2)T . The constraints are defined by

A =

[
1 1 1 0 2 1
1 −1 0 1 0 2

]
, b =

[
3
3

]
We start with x1 and x3 as basic variables. I.e. basic and non-basic variable
indices are β = {1, 3} and η = {2, 4, 5, 6}, so

Aβ =

[
1 1
0 1

]
, Aν =

[
1 0 2 1
−1 1 0 2

]
and b̄ = A−1

β b = [3 0]T which gives the starting basic solution x = (3, 0, 0, 0, 0, 0).
This is a degenerate basic solution.

From the equations ATβ y = cβ and ĉTν = cTν − yTAν we get

y =

[
−3

1

]
, rTν =

[
1 0 7 −1

]
.

Let x6 enter the basis. Which one should exit ?
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From Aβ â6 = a6, we get that â6 = (2,−1)T , and since the second element is
negative, x1 exits the basis.

Update basic and non-basic matrices; The basic and non-basic variable indices
are given by β = {3, 6} och η = {1, 2, 4, 5}, and

Aβ =

[
1 1
0 2

]
, Aν =

[
1 1 0 2
1 −1 1 0

]
The equations ATβ y = cβ and ĉTν = cTν − yTAν gives

y =

[
−3
0.5

]
, rTν =

[
0.5 0.5 0.5 7

]
.

Since all reduced costs are non-negative, x̂ = (0, 0, 3/2, 0, 0, 3/2)T is optimal.

(b) The dual is

(D)



max
y

3y1 + 3y2

s.t. y1 + y2 ≤ −2
y1 − y2 ≤ −3
y1 ≤ −3
y2 ≤ 1
2y1 ≤ 1
y1 + 2y2 ≤ −2
yi free.


.

(c) The optimal dual solution is

ŷ =

[
−3
0.5

]
,

from the last step of the simplex method. It is easy to check that all constraints
are satisifed and that the objective function value is -7.5.

The starting simplex multiplicators are

ys =

[
−3

1

]
,

and it is easy to see that the last constraint is not satisfied and that the objective
function value is -6.

According to the weak duality Theorem it should hold that cTx ≥ bT y for all
x feasible for the primal and y feasible for the dual.

Here, bT ys = −6 6≤ −9 = bT ŷ = cT x̂ but ys is not feasible to the dual, so it
does not contradict the Theorem.

3. (a) This a least-squares problem with

A =

[
1 0 1
1 2 3

]
, B =

[
0
1

]
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Then

ATA =

 2 2 4
2 4 6
4 6 10

 , ATB =

 1
2
3

 ,
and x̄ = [0 1/2 0] is a solution to ATAx = ATB and there are infinitely many
others since A only has rank 2.

Therefore, we want to find the minimum norm solution:

AAT =

[
2 4
4 14

]
, Ax̄ =

[
0
1

]
,

then u = [−1/3 1/6]T solve AATu = Ax̄.

Finally

x̂(1) = ATu =

 −1/6
1/3
1/6


(b) We add the linear constraint Ax = b, where A = [1 1 1] and B = 1.

For the Lagrange method, the following equation system must be solved[
H −AT
A 0

] [
x̂
û

]
=

[
−c
b

]
,

That is: 
2 2 4 −1
2 4 6 −1
4 6 10 −1
1 1 1 0

[ x̂û
]

=


1
2
3
1

 ,
from which we see that û = 0 and x̂(2) = [1/2 1 − 1/2].

In both cases, the objective function values are zero, i.e.,

f(x̂(i)) =
1

2
x̂(i)TATAx̂(i) − (ATB)T x̂(i) +

1

2
BTB = 0

for i = 1, 2. In both cases there is no matching error, i.e., perfect matches are
possible, in addition two other criteria are used to obtain unique solutions.

4. (a) The gradient and hessian are given by

∇f(x, y) =
[
y + x2 x+ y2

]
, ∇2f(x) =

 2x 1

1 2y

 .
The first order optimality conditions are satisfied when ∇f(x, y) = 0, i.e., when
y2 + x = (−x2)2 + x = x(1 + x3) = 0. That is when x = 0 or x = −1, which
gives us two points x(1) = (0, 0) and x(2)(−1,−1).
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The second order optimality conditions depends on the definiteness of the Hes-
sian.

∇2f(x(1)) =

 0 1

1 0

 , ∇2f(x(2)) =

 −2 1

1 −2


The first point corresponds to a saddle point and is not a local optimum and
the second point corresponds to a local maximum since the Hessian is negative
definite.

The problem is unbounded from below, so there is no global optimum for the
problem.

(b) We consider the Lagrange optimality conditions

∇f(x) + λ∇h(x) =
[
y + x2 x+ y2

]
+ λ

[
1 1

]
= 0,

which is satisfied for λ = 0 and x/y = 1/e. Using the constraint x+y = 1 gives
y = 1− x. Then x+ y2 + λ = x2 − x+ (1 + λ) =

Then x = 1
2 ±

√
1
4 − 1− λ and y = 1

2 ∓
√

1
4 − 1− λ.

Since t =
√

1
4 − 1− λ ≥ 0 can be chosen arbitrary, any x and y such that

x+ y = 1 satifies the equation system.

In fact, f(x, 1−x) = 1
3 , so all points on the line are optimal and have the same

optimal value.

5. (a) The feasible set is convex since the functions fi are linear, and therefore also
convex.

The function e−x is convex, since ∇2e−x = e−x > 0. Since f0 is a sum of
positive konstant times convex functions it is convex on 2, hence convex on the
feasible set.

(P) is a convex optimization problem.

(b) The gradients are given by

∇f0(x) =
[
−e−x1 −2e−x2 −3e−x3

]
,

∇f1(x) =
[

1 0 0
]
, ∇f2(x) =

[
0 1 0

]
.

∇f3(x) =
[

0 0 1
]
, ∇f2(x) =

[
1 1 1

]
.

The KKT conditions are[
−e−x1 + y1 + y4 −2e−x2 + y2 + y4 −3e−x3 + y3 + y4

]
= 0.

y1 ≥ 0, y2 ≥ 0, y3 ≥ 0, y4 ≥ 0,

x1 ≤ 1, x2 ≤ 1, x3 ≤ 1, x1 + x2 + x3 ≤ 2.5,

(x1 − 1)y1 = 0, (x2 − 1)y2 = 0, (x3 − 1)y3 = 0, (x1 + x2 + x3 − 2.5)y4 = 0,
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Since the problem is strictly convex, there will be at most one point that satisfies
the KKT conditions.

The objective function is decreasing in each of the variables so we want all
variables as small as possible and especially those with large index. Not all
constraints can be active at the same time. Assume that constraints 2,3 and 4
are active. Then x2 = 1, x3 = 1 and x1 + x2 + x3 = 2.5, i.e., x1 = 0.5. Can the
other KKT conditions be satisfied?

With y1 = 0 then KKT4 are satisfied.

For KKT1 we have[
−e−0.5 + y4 −2e−1 + y2 + y4 −3e−1 + y3 + y4

]
= 0.

This holds if y4 = e−0.5 = 0.61 ≥ 0, and y2 = 2e−1 − y4 = 2 · 0.37 − 0.61 =
0.13 ≥ 0, and y3 = 3e−1 − y4 = 3 · 0.37 − 0.13 = 0.98 ≥ 0. So KKT2 is also
satisfied and since the problem is convex and regular this is the optimal point.

(c) The objective function is lower bounded by
∑n

k=1 ke
−1 = 0.37n(n+1)

2 and there-
fore there exists an optimal point, which must be unique due to strict convexity.

If m ≥ n then xi = 1 for i = 1, · · · , n, and the lower bound above is attained.

It is clear that if some xµ = 1 at the optimal solution then xk has to be 1
also for all k ≥ µ. It is important to understand that the optimal solution
has the following structure; If m ≤ n, then there is a µ such that xi = 1 for
i = n− µ+ 1, · · · , n and yi = 0 for i = 1, · · · , n− µ.

It is a bit complicated to prove that the KKT solution has this structure, and
a complete analysis is not needed for full points.

To prove optimality we need to show that the KKT conditions has such a
solution.

KKT1 leads to ke−xk − yn+1 = 0 for k = 1, · · · , n− µ, hence

xk = log(k/yn+1), k = 1, · · · , n− µ.

The condition x1 + · · ·+ xn−µ = m− µ, then determines yn+1 from

n−µ∑
k=1

log(k/yn+1) =

n−µ∑
k=1

log(k)− (n− µ) log yn+1 = m− µ.

which is

yn+1 = exp

{∑n−µ
k=1 log(k)− (m− µ)

n− µ

}
≥ 0.

It remains to show that for this choice of xk there are positive yn−µ+1, · · · , yn
such that the rest of the KKT1 conditions are satisfied. Now −ke−1 + yk +
yn+1 = 0, so yk = ke−1 − yn+1 ≥ 0 should hold, and it is enough to check
(n− µ+ 1)e−1 ≥ yn+1. This inequality determines the value of µ.


