
Exam in SF1811 Optimization.
April 10, 2017, 14:00–19:00.

Examiner: Krister Svanberg, telephone: 790 7137, email: krille@math.kth.se.

Allowed utensils: Pen, paper, eraser and ruler. (Penna, papper, suddgummi och linjal.)
No calculator! (Ingen räknare!) A formula-sheet is handed out.

Language: Your solutions should be written in English or in Swedish.

Unless otherwise stated in the problem statement, the problems should be solved using
systematic methods that do not become unrealistic for large problems. Unless otherwise
stated in the problem statement, known theorems can be used without proving them, as
long as they are formulated correctly. Motivate all your conclusions carefully.
A passing grade E is guarranteed for 25 points, including bonus points from the home
assignments during Nov-Dec 2016. 23-24 points give a possibility to complement the
exam to grade E within three weeks from the announcement of the results. Contact the
examiner as soon as possible by email if this is the case.
Write your name on each page of the solutions you hand in and number the pages.
Write the solutions to the different exercises 1,2,3,4,5 on separate sheets.
This is important since the exams are split up during the corrections.

1. In (a) and (b) below you should use the simplex method to solve two LP problems,
while (c) deals with their corresponding dual problems. Both problems are on the
standard form

minimize cTx
subject to Ax = b,

x ≥ 0,

with a non-empty feasible region F = {x ∈ IR4 | Ax = b and x ≥ 0}.
In each of (a) and (b) below, your result should either be an optimal solution x̂
to the problem, or (if no optimal solution exists) a half-line on the parameter form
x(t) = x̄ + td, where x̄ and d are fixed vectors in IR4, and t is a non-negative
parameter. This half-line should satisfy Ax(t) = b and x(t) ≥ 0 for all t ≥ 0, and
cTx(t)→ −∞ when t→ +∞.

(a) In the first problem, the data are as follows:

A =

[
1 1 2 −3
0 1 1 −2

]
, b =

(
4
3

)
and cT = ( 2, 2, 3, −4 ).

Start the simplex method with x1 and x2 as basic variables. . . . . . . . . . . . . (5p)

(b) In the second problem, the data are as follows:

A =

[
1 1 2 −3
0 1 1 −2

]
, b =

(
4
3

)
and cT = ( 2, 2, 3, −6 ).

Again, start the simplex method with x1 and x2 as basic variables. . . . . . . (5p)

1



Page 2 of 4 Exam 2017-04-10 SF1811

(c) For each of the above two problems, formulate the corresponding dual problem,
and illustrate the constraints of this dual problem in a large, carefully drawn
figure with the first dual variable y1 on the horizontal axis and the second dual
variable y2 on the vertical. Also indicate the feasible region (if it exists) in the
figure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3p)

Note that the only difference between the two problems is that the last component
in the cost vector c is −4 in the first problem and −6 in the second problem.

2. This exercise deals with a minimum cost flow problem, MCFP, in a certain network
with four nodes and five arcs. There are two source nodes, node 1 and node 2, with
given supplies s1 units (node 1) and s2 units (node 2), and two sink nodes, node 3
and node 4, with given demands d3 units (node 3) and d4 units (node 4).
It is assumed that s1 > 0, s2 > 0, d3 > 0, d4 > 0 and s1 + s2 = d3 + d4 = 10.
This can equivalently be expressed as follows, where u and v are given numbers:

s1=u, s2=10−u, d3=v, d4=10−v, 0<u<10 and 0<v<10. (1)

All arcs are directed, and the set of arcs is given by {(1, 2), (1, 3), (2, 3), (2, 4), (3, 4)},
where (i, j) denotes an arc from node i to node j.

The corresponding MCFP can be formulated as an LP problem on the form:
minimize cTx subject to Ax = b and x ≥ 0, where the variable vector is
x = (x12, x13, x23, x24, x34)

T, with xij = the flow from node i to node j in (i, j).
The cost cij per unit flow in (i, j) is equal to 1 in all the arcs.
Thus, the cost vector is given by c = (c12, c13, c23, c24, c34)

T = (1, 1, 1, 1, 1)T.

Since the total supply equals the total demand, it is a balanced network flow problem,
and then each spanning tree in the network corresponds to a basic solution to the
MCFP problem.

(a) Illustrate the network in a figure, and write down, in details, the corresponding
matrix A and right hand side vector b (expressed in u and v from (1)). . (3p)

(b) Consider the spanning tree defined by the arc set T1={(1, 2), (2, 3), (3, 4)}.
Calculate the corresponding basic solution x, expressed in u and v from (1),
and show that x is a feasible solution to the MCFP. Then show that x is not
an optimal solution, by calculating a better solution x̃, expressed in u and v.
(x̃ need not be optimal, but it should be a feasible solution to the MCFP and
have a lower objective value than x.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3p)

(c) Consider the spanning tree defined by the arc set T2={(1, 3), (2, 3), (2, 4)}.
Calculate the corresponding basic solution x̂, expressed in u and v from (1).
Assume first that the given numbers u and v in (1) satisfies 0<u<v<10.
Then show that x̂ is a unique optimal solution to the considered MCFP.
Assume next that the given numbers u and v in (1) satisfies 0<v<u<10.
Then show that x̂ is not an optimal solution to the MCFP. . . . . . . . . . . . . . (3p)
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3. Consider the following quadratic optimization problem P in the variable vector
x = (x1, x2, x3)

T ∈ IR3:

P: minimize f(x) = 1
2 (x21 + x22 + x23 − 2Cx2x3 )

subject to x1 + 2x2 − 3x3 = 10,
3x1 + x2 − 4x3 = 10,

where C ∈ IR is a given constant (which may be positive, negative or zero).

(a) Assume first that C = 0.
Then use a nullspace method to calculate an optimal solution x̂ to P.
Also calculate numbers (Lagrange multipliers) u1 and u2 which together
with your calculated x̂ satisfy the Lagrange optimality conditions for P. . (5p)

(b) For which values on the constant C is there a unique optimal solution to P?
For these values on C, calculate the optimal solution x̂ (which may or may not
depend on C) and the optimal value f(x̂) of P. . . . . . . . . . . . . . . . . . . . . . . . . . . (3p)

(c) Is there any value on C for which there is an infinite number of optimal solutions
to P? In that case, for this value on C, give an explicit expression for the set
of optimal solutions to P, and the optimal value of P. . . . . . . . . . . . . . . . . . . . (2p)

4. In this exercise, the following four functions hi are given, where x = (x1, x2)
T∈IR2.

h1(x) = (x1 + 2)2 + (x2 + 1)2 − 4,

h2(x) = (x1 − 2)2 + (x2 + 1)2 − 4,

h3(x) = (x1 + 1)2 + (x2 − 2)2 − 4,

h4(x) = (x1 − 1)2 + (x2 − 2)2 − 4,

(a) Calculate an optimal solution x̃ ∈ IR2 to the following problem:
minimize h1(x)+h2(x)+h3(x)+h4(x) subject to x ∈IR2.
Use your result to show that h1(x)+h2(x)+h3(x)+h4(x) > 0 for all x ∈IR2,
and that there is no solution to the system hi(x) = 0, i = 1, 2, 3, 4. . . . . . (3p)

(b) Then one would like to solve the following non-linear least squares problem:

minimize f(x) = 1
2 (h1(x)2+ h2(x)2+ h3(x)2+ h4(x)2).

Consider the vector x = 0, with f(0) = 1
2 (1 + 1 + 1 + 1) = 2. Is this

(i) a global optimal solution?
(ii) a local but not global optimal solution?
(iii) not even a local optimal solution?
Motivate your answer carefully. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (4p)

(c) Is the above function f a convex function on IR2 ? Motivate carefully. . . . (3p)

Hint: In (c), you may use that h1(x)+h2(x)+h3(x)+h4(x) > 0 for all x∈IR2,
even if you failed to solve (a).
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5. Let S be the following set in IR3:

S = {x = (x1, x2, x3)
T∈ IR3 | |x1|+|x2|+|x3| ≤ 1}.

S is in fact the set of solutions to 8 linear inequality constraints:
x1+x2+x3 ≤ 1, x1+x2−x3 ≤ 1, x1−x2+x3 ≤ 1, . . . , −x1−x2−x3 ≤ 1.

(a) Let q = (−0.5, 0.4,−0.4)T and consider the following problem P:

P: minimize 1
2 ‖x−q ‖2

subject to x ∈ S,

where, as usual, ‖x−q ‖2 = (x−q)T(x−q).

Use Lagrange relaxation (with respect to the linear inequality constraints)
and the global optimality conditions to show that x̂ = (−0.4, 0.3,−0.3)T

is an optimal solution to P. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (4p)

(b) Assume now instead that q = (−0.8, 0.6,−0.1)T.
Show, by using the same technique as above, that x̂ = (−0.6, 0.4, 0)T

is an optimal solution to P. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (4p)

Good luck!


