
Exam in SF1811 Optimization.
January 11, 2017, 14:00–19:00.

Examiner: Krister Svanberg, telephone: 790 7137, email: krille@math.kth.se.

Allowed utensils: Pen, paper, eraser and ruler. (Penna, papper, suddgummi och linjal.)
No calculator! (Ingen räknare!) A formula-sheet is handed out.

Language: Your solutions should be written in English or in Swedish.

Unless otherwise stated in the problem statement, the problems should be solved using
systematic methods that do not become unrealistic for large problems. Unless otherwise
stated in the problem statement, known theorems can be used without proving them, as
long as they are formulated correctly. Motivate all your conclusions carefully.
A passing grade E is guarranteed for 25 points, including bonus points from the home
assignments during Nov-Dec 2016. 23-24 points give a possibility to complement the
exam to grade E within three weeks from the announcement of the results. Contact the
examiner as soon as possible by email if this is the case.
Write your name on each page of the solutions you hand in and number the pages.
Write the solutions to the different exercises 1,2,3,4,5 on separate sheets.
This is important since the exams are split up during the corrections.

1. A certain network with six nodes and eight directed arcs has two source nodes, called
node 1 and node 2, with given supplies 40 units (for node 1) and 30 units (for node 2),
two intermediate nodes, called node 3 and node 4, without any supplies or demands,
and two sink nodes, called node 5 and node 6, with given demands 20 units (for
node 5) and 50 units (for node 6). There are directed arcs from each source node to
each intermediate nodes, and also from each intermediate node to each sink node.
Thus, the set of arcs is A = { (1, 3), (1, 4), (2, 3), (2, 4), (3, 5), (3, 6), (4, 5), (4, 6) },
where (i, j) denotes the arc from node i to node j. The vector with costs per unit flow
in the arcs is given by c = (c13, c14, c23, c24, c35, c36, c45, c46)

T = (2, 2, 2, 4, 3, 4, 3, 3)T,
where cij denotes the cost per unit flow in the arc (i, j).

We are interested in finding an optimal solution to the minimum cost flow problem
corresponding to the above network.

(a) An experienced planner suggests that flow should be sent only in the arcs
{ (1, 4), (2, 3), (3, 5), (3, 6), (4, 6) }, which correspond to a spanning tree in
the network, while no flow should be sent in the arcs { (1, 3), (2, 4), (4, 5) }.
Verify that the planner’s suggestion indeed leads to an optimal solution. (4p)

(b) Since the above minimum cost flow problem is in fact an LP problem, there is
a corresponding dual LP problem.

Formulate this dual LP problem in details (with the objective function and all
the constraints explicitly expressed in the variables) and calculate an optimal
solution to this dual LP problem. Your calculations in the above exercise (a)
may of course be used. Verify that your dual solution is feasible to the dual
problem, and that the primal and dual objective values are equal. . . . . . . . (4p)
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2. Consider the following LP problem P1 on standard form:

P1: minimize 3x1 + 3x2 + 6x3

subject to 2x1 + x2 + 2x3 = 6,

x1 + x2 + 4x3 = 9,

xj ≥ 0, j = 1, 2, 3.

(a) Verify that a BFS (basic feasible solution) is obtained by chosing x2 and x3 as
basic variables.
Then start from this BFS and solve P1 with the simplex method. . . . . . . . (5p)

(b) Assume that the right hand side of the first constraints in the above problem
P1 is changed from 6 to 4, so that the following problem P2 is obtained:

P2: minimize 3x1 + 3x2 + 6x3

subject to 2x1 + x2 + 2x3 = 4,

x1 + x2 + 4x3 = 9,

xj ≥ 0, j = 1, 2, 3.

Verify that a BFS to P2 is not obtained with x2 and x3 as basic variables. (1p)

(c) The general method to search for a BFS to P2 is then to generate and solve
the following so called “Phase 1 problem” in the original variables xj and two
artificial variables vi :

P3: minimize v1 + v2

subject to 2x1 + x2 + 2x3 + v1 = 4,

x1 + x2 + 4x3 + v2 = 9,

xj ≥ 0, j = 1, 2, 3,
vi ≥ 0, i = 1, 2.

Verify that a BFS to P3 is obtained with v1 and v2 as basic variables.

Then start from this BFS and solve P3 with the simplex method.

The result should either be a BFS to the problem P2 in exercise (b),
or a conclusion that there are no feasible solutions at all to P2.

If you find a BFS to P2, you should carefully verify that this is the case.
If you conclude that there are no feasible solutions at all to P2, this conlcusion
should be carefully motivated. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5p)
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3. The four sides in a certain square are called South, West, North and East, while
the four corners are called SouthWest, NorthWest, NorthEast and SouthEast.

Corresponding to each side, there is a given known number (e.g. the average
of measured values of some physical quantity along the side).

These given side numbers are denoted, respectively, bs, bw, bn and be.

In this exercise you should calculate numbers xsw, xnw, xne and xse corresponding
to the four corners (e.g. the unknown value of the above physical quantity in the
corners) according to certain requirements described below.

First of all, these corner numbers should satisfy that each side number is the average
of the two corner numbers corresponding to the side, i.e. that

xsw + xse
2

= bs ,
xsw + xnw

2
= bw ,

xnw + xne
2

= bn ,
xne + xse

2
= be . (1)

(a) Show that it is possible find corner numbers which satisfy the constraints (1)
if and only if the given side numbers satisfies that wTb = 0, where
w = (1,−1, 1,−1)T and b = (bs, bw, bn, be)

T.

Also show that if wTb = 0 then there is an infinite number of vectors
x = (xsw, xnw, xne, xse)

T which satisfy the above constraints (1). . . . . . . . (3p)

(b) This exercise (b) can be solved even if you failed with the proofs in (a).

Assume that b = (bs, bw, bn, be)
T satisfies wTb = 0.

Then, in addition to the above constraints (1), one would like that each corner
number should be the average of the side numbers for the two sides who meet
in the corner, i.e that

xsw = bsw, xnw = bnw, xne = bne, xse = bse, (2)

where the numbers in the right hand sides are given by

bsw =
bs + bw

2
, bnw =

bn + bw
2

, bne =
bn + be

2
, bse =

bs + be
2

.

But since it is not possible in general to satisfy simultaneously both (1) and
(2), one would instead like to find corner numbers which are optimal to the
following quadratic optimization problem:

minimize 1
2 ((xsw− bsw)2 + (xnw− bnw)2 + (xne− bne)

2 + (xse− bse)
2)

subject to that x = (xsw, xnw, xne, xse)
T satisfies the constraints (1).

(3)

Assume that b = (bs, bw, bn, be)
T = (1, 3, 4, 2)T, which satisfies wTb = 0.

Then solve the above quadratic optimization problem (3) using a nullspace
method. What are the optimal corner numbers? . . . . . . . . . . . . . . . . . . . . . . . . (6p)
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4. Consider the following problem P in the variables x1, x2 and x3,

P: minimize
1

x1
+

1

x2
+

1

x3
+ 9x1 + 16x2 + 25x3

subject to
1

x1
+

1

x2
+

1

x3
≤ b,

xj > 0, for j = 1, 2, 3,

where b > 0 is a given strictly positive real number.

Let the constraint
1

x1
+

1

x2
+

1

x3
− b ≤ 0 be the only explicit constraint (g(x) ≤ 0),

while the constraints xj > 0 are considered to be implicit constraints (x ∈ X).

(a) Use Lagrange relaxation (with respect to the explicit constraint) to deduce
an explicit expression for the dual objective function ϕ(y), valid for y ≥ 0. (4p)

(b) Assume that b = 6.
Calculate a number ŷ ≥ 0 such that ϕ(ŷ) ≥ ϕ(y) for all y ≥ 0.
Then calculate a vector x̂ ∈ X which together with ŷ satisfies the
global optimality condition (GOC) for P.
Finally, check that the primal objective value for x = x̂ is equal to
the dual objective value for y = ŷ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3p)

(c) Repeat all the steps in the above exercise (b), but now with b = 18. . . . . (3p)

5. Let the nonlinear function f : IR2 → IR be defined by

f(x) = x21x
2
2 + 2x21 + 2x22 − 12x1 − 12x2, where x = (x1, x2)

T.

(a) Perform a complete iteration with Newtons method for minimizing f(x)
without any constraint, starting from the point x(1) = (1, 0)T.
Make sure that f(x(2)) < f(x(1)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5p)

(b) Decide, for each of the following three convex sets, if the above function f is
a convex function on the set or not.

C1 = {x∈IR2 | xTx < 1 }, C2 = {x∈IR2 | xTx < 4 }, C3 = {x∈IR2 | xTx < 9 }.
Motivate your answers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3p)

(c) Is there any point x̃ ∈ IR2 such that x̃1 6= x̃2 and x̃ is a local optimal
solutions to the problem of minimizing f(x) without any constraints?
Motivate your answer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2p)

(d) Is there any point x̃ ∈ IR2 such that x̃1 = x̃2 and x̃ is a local optimal
solutions to the problem of minimizing f(x) without any constraints?
Motivate your answer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2p)

Good luck!


