Formula sheet on the exam in SF1811, Jan 2016

Note: No calculator is allowed on the exam!
$\mathcal{R}(\mathbf{A})^{\perp}=\mathcal{N}\left(\mathbf{A}^{\boldsymbol{\top}}\right), \quad \mathcal{R}\left(\mathbf{A}^{\boldsymbol{\top}}\right)^{\perp}=\mathcal{N}(\mathbf{A}), \quad \mathcal{N}(\mathbf{A})^{\perp}=\mathcal{R}\left(\mathbf{A}^{\boldsymbol{\top}}\right), \quad \mathcal{N}\left(\mathbf{A}^{\boldsymbol{\top}}\right)^{\perp}=\mathcal{R}(\mathbf{A})$.
Simplex method for LP problem on standard form.
$\mathbf{A}_{\beta}=\left[\mathbf{a}_{\beta_{1}} \cdots \mathbf{a}_{\beta_{m}}\right], \quad \mathbf{A}_{\nu}=\left[\mathbf{a}_{\nu_{1}} \cdots \mathbf{a}_{\nu_{\ell}}\right], \quad \mathbf{A}_{\beta} \overline{\mathbf{b}}=\mathbf{b}, \quad \bar{z}=\mathbf{c}_{\beta}^{\top} \overline{\mathbf{b}}, \quad \mathbf{A}_{\beta}^{\top} \mathbf{y}=\mathbf{c}_{\beta}, \mathbf{r}_{\nu}^{\top}=\mathbf{c}_{\nu}^{\top}-\mathbf{y}^{\top} \mathbf{A}_{\nu}$. Finished if $\mathbf{r}_{\nu} \geq \mathbf{0}$. Otherwise, choose a q with $r_{\nu_{q}}<0 . k=\nu_{q}, \mathbf{A}_{\beta} \overline{\mathbf{a}}_{k}=\mathbf{a}_{k}, x_{k}=t$, $z=\bar{z}+r_{k} t, \quad \mathbf{x}_{\beta}=\overline{\mathbf{b}}-\overline{\mathbf{a}}_{k} t, \quad t^{\max }=\min _{i}\left\{\left.\frac{\bar{b}_{i}}{\bar{a}_{i k}} \right\rvert\, \bar{a}_{i k}>0\right\}=\frac{\bar{b}_{p}}{\bar{a}_{p k}}$. Let ν_{q} och β_{p} change place.

$$
\mathrm{P}: \quad \text { minimize } \mathbf{c}_{1}^{\top} \mathbf{x}_{1}+\mathbf{c}_{2}^{\top} \mathbf{x}_{2}
$$

D : maximize $\mathbf{b}_{1}^{\top} \mathbf{y}_{1}+\mathbf{b}_{2}^{\top} \mathbf{y}_{2}$
subject to $\quad \mathbf{A}_{11} \mathbf{x}_{1}+\mathbf{A}_{12} \mathbf{x}_{2} \geq \mathbf{b}_{1}$,
$\mathbf{A}_{21} \mathbf{x}_{1}+\mathbf{A}_{22} \mathbf{x}_{2}=\mathbf{b}_{2}$,
subject to $\quad \mathbf{A}_{11}^{\top} \mathbf{y}_{1}+\mathbf{A}_{21}^{\top} \mathbf{y}_{2} \leq \mathbf{c}_{1}$,
$\mathbf{A}_{12}^{\top} \mathbf{y}_{1}+\mathbf{A}_{22}^{\top} \mathbf{y}_{2}=\mathbf{c}_{2}$,
$\mathbf{x}_{1} \geq \mathbf{0}, \quad \mathbf{x}_{2}$ free.
$\mathbf{y}_{1} \geq \mathbf{0}, \quad \mathbf{y}_{2}$ free.
$\hat{\mathbf{x}}$ is optimal to P and $\hat{\mathbf{y}}$ is optimal D if and only if $\hat{\mathbf{x}}$ is feasible to $\mathrm{P}, \hat{\mathbf{y}}$ is feasible to D , $\hat{\mathbf{y}}_{1}^{\top}\left(\mathbf{A}_{11} \hat{\mathbf{x}}_{1}+\mathbf{A}_{12} \hat{\mathbf{x}}_{2}-\mathbf{b}_{1}\right)=0$ and $\hat{\mathbf{x}}_{1}^{\top}\left(\mathbf{c}_{1}-\mathbf{A}_{11}^{\top} \hat{\mathbf{y}}_{1}-\mathbf{A}_{21}^{\top} \hat{\mathbf{y}}_{2}\right)=0$.

A symmetric matrix \mathbf{H} is positive definite [semidefinite] if and only if there is a lower triangular matrix \mathbf{L} with all $\ell_{i i}=1$ and a diagonal matrix \mathbf{D} with all $d_{i}>0\left[d_{i} \geq 0\right]$ such that $\mathbf{H}=\mathbf{L D L}^{\top}$.
Quadratic functions. $\quad f(\mathbf{x})=\frac{1}{2} \mathbf{x}^{\top} \mathbf{H} \mathbf{x}+\mathbf{c}^{\top} \mathbf{x}+c_{0}$, with \mathbf{H} symmetric.
$\nabla f(\mathbf{x})=(\mathbf{H x}+\mathbf{c})^{\top}, \mathbf{F}(\mathbf{x})=\mathbf{H}, f(\mathbf{x}+t \mathbf{d})=f(\mathbf{x})+t(\mathbf{H} \mathbf{x}+\mathbf{c})^{\top} \mathbf{d}+\frac{1}{2} t^{2} \mathbf{d}^{\top} \mathbf{H d}$.
$\hat{\mathbf{x}}$ minimizes $f(\mathbf{x})$ if and only if \mathbf{H} is positive semidefinite and $\mathbf{H} \hat{\mathbf{x}}+\mathbf{c}=\mathbf{0}$.
Equality-constrained $Q P$. minimize $\frac{1}{2} \mathbf{x}^{\top} \mathbf{H} \mathbf{x}+\mathbf{c}^{\top} \mathbf{x}+c_{0}$ subject to $\mathbf{A x}=\mathbf{b}$.
$\hat{\mathbf{x}}=\overline{\mathbf{x}}+\mathbf{Z} \hat{\mathbf{v}}, \quad\left(\mathbf{Z}^{\top} \mathbf{H Z}\right) \hat{\mathbf{v}}=-\mathbf{Z}^{\top}(\mathbf{H} \overline{\mathbf{x}}+\mathbf{c}), \quad\left[\begin{array}{cc}\mathbf{H} & -\mathbf{A}^{\top} \\ \mathbf{A} & \mathbf{0}\end{array}\right]\binom{\hat{\mathbf{x}}}{\hat{\mathbf{u}}}=\binom{-\mathbf{c}}{\mathbf{b}}$.
$M N$ solution to $L S Q$ problems. $\quad \mathbf{A}^{\top} \mathbf{A} \overline{\mathbf{x}}=\mathbf{A}^{\top} \mathbf{b}, \quad \mathbf{A A}^{\top} \overline{\mathbf{u}}=\mathbf{A} \overline{\mathbf{x}}, \quad \hat{\mathbf{x}}=\mathbf{A}^{\top} \overline{\mathbf{u}}$.
Newton. $\mathbf{F}\left(\mathbf{x}^{(k)}\right) \mathbf{d}=-\nabla f\left(\mathbf{x}^{(k)}\right)^{\top}$ gives $\mathbf{d}^{(k)}$ if $\mathbf{F}\left(\mathbf{x}^{(k)}\right)$ is positive definite. $\mathbf{x}^{(k+1)}=\mathbf{x}^{(k)}+t_{k} \mathbf{d}^{(k)}$ where t_{k} satisfies $f\left(\mathbf{x}^{(k)}+t_{k} \mathbf{d}^{(k)}\right)<f\left(\mathbf{x}^{(k)}\right)$. Try $t_{k}=1$ first.
Nonlinear LSQ. minimize $f(\mathbf{x})=\frac{1}{2} \sum_{i=1}^{m}\left(h_{i}(\mathbf{x})\right)^{2}=\frac{1}{2} \mathbf{h}(\mathbf{x})^{\top} \mathbf{h}(\mathbf{x})$.
$\mathbf{x} \in \mathbb{R}^{n}, \mathbf{h}(\mathbf{x}) \in \mathbb{R}^{m}, \nabla \mathbf{h}(\mathbf{x})$ a $m \times n$ matrix with $\frac{\partial h_{i}}{\partial x_{j}}(\mathbf{x})$ in row i and column j.
$\nabla f(\mathbf{x})=\mathbf{h}(\mathbf{x})^{\top} \nabla \mathbf{h}(\mathbf{x})$ (row vector), $\mathbf{F}(\mathbf{x})=\nabla \mathbf{h}(\mathbf{x})^{\top} \nabla \mathbf{h}(\mathbf{x})+\sum_{i} h_{i}(\mathbf{x}) \mathbf{H}_{i}(\mathbf{x})$.
Gauss-Newton. $\quad \nabla \mathbf{h}\left(\mathbf{x}^{(k)}\right)^{\top} \nabla \mathbf{h}\left(\mathbf{x}^{(k)}\right) \mathbf{d}=-\nabla \mathbf{h}\left(\mathbf{x}^{(k)}\right)^{\top} \mathbf{h}\left(\mathbf{x}^{(k)}\right)$ gives $\mathbf{d}^{(k)}$.
$\mathbf{x}^{(k+1)}=\mathbf{x}^{(k)}+t_{k} \mathbf{d}^{(k)}$ where t_{k} satisfies $f\left(\mathbf{x}^{(k)}+t_{k} \mathbf{d}^{(k)}\right)<f\left(\mathbf{x}^{(k)}\right)$. Try $t_{k}=1$ first.
Equality-constrained NLP. minimize $f(\mathbf{x})$ subject to $h_{i}(\mathbf{x})=0, i=1, \ldots, m$.
Lagrange conditions: $\nabla f(\hat{\mathbf{x}})+\sum_{i} \hat{u}_{i} \nabla h_{i}(\hat{\mathbf{x}})=\mathbf{0}^{\top}$ and $h_{i}(\hat{\mathbf{x}})=0, i=1, \ldots, m$.
Inequality-constrained NLP. minimize $f(\mathbf{x})$ subject to $g_{i}(\mathbf{x}) \leq 0, i=1, \ldots, m$.
KKT conditions: $\nabla f(\hat{\mathbf{x}})+\sum_{i} \hat{y}_{i} \nabla g_{i}(\hat{\mathbf{x}})=\mathbf{0}^{\top}, \quad g_{i}(\hat{\mathbf{x}}) \leq 0, \quad \hat{y}_{i} \geq 0, \quad \hat{y}_{i} g_{i}(\hat{\mathbf{x}})=0$.
Lagrangean relaxation. P : minimize $f(\mathbf{x})$ subject to $\mathbf{g}(\mathbf{x}) \leq \mathbf{0}$ and $\mathbf{x} \in X$.
$L(\mathbf{x}, \mathbf{y})=f(\mathbf{x})+\mathbf{y}^{\top} \mathbf{g}(\mathbf{x}), \varphi(\mathbf{y})=\min _{\mathbf{x} \in X} L(\mathbf{x}, \mathbf{y})$. D: maximize $\varphi(\mathbf{y})$ s.t. $\mathbf{y} \geq \mathbf{0}$.
Glob. opt. cond. (GOC): $L(\hat{\mathbf{x}}, \hat{\mathbf{y}})=\min _{\mathbf{x} \in X} L(\mathbf{x}, \hat{\mathbf{y}}), \mathbf{g}(\hat{\mathbf{x}}) \leq \mathbf{0}, \hat{\mathbf{y}} \geq \mathbf{0}, \hat{\mathbf{y}}^{\top} \mathbf{g}(\hat{\mathbf{x}})=0$.

