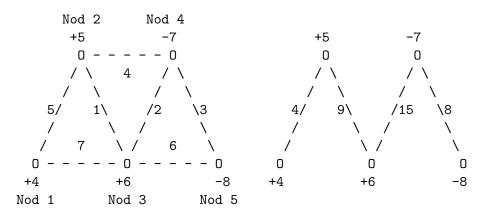
Solutions to exam in SF1811 Optimization, April 7, 2015

1.(a)+(b)

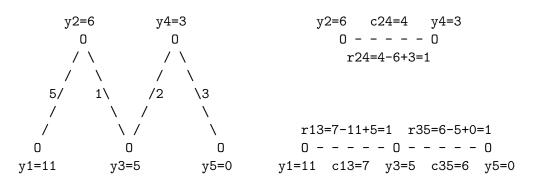
The network corresponding to the given LP problem can be illustrated by the left figure below, where the supply at the nodes (i.e. the components in the vector \mathbf{b}), and the unit costs of the arcs (i.e. the components in the vector \mathbf{c}) are written in the figure.

All arcs are directed from left to right. Negative supply means demand.

The suggested solution $\hat{\mathbf{x}} = (4, 0, 9, 0, 15, 0, 8)^{\mathsf{T}}$ can be illustrated by the spanning tree in the right figure below, with the arc-flows written on the arcs.



The simplex multipliers y_i for the nodes are calculated from $y_5 = 0$ and $y_i - y_j = c_{ij}$ for all ars (i, j) in the spanning tree (left figure below), whereafter the reduced cost for the non-basic variables are calculated from $r_{ij} = c_{ij} - y_i + y_j$ (right figure below).



Since all $r_{ij} \ge 0$, the suggested solution $\hat{\mathbf{x}}$ is optimal.

1.(c) When the primal problem is on the standard form

$$\begin{array}{ll} \text{minimize} & \mathbf{c}^{\mathsf{T}} \mathbf{x} \\ \text{subject to} & \mathbf{A} \mathbf{x} = \mathbf{b}, \\ & \mathbf{x} \geq \mathbf{0}, \end{array}$$

the corresponding dual problem becomes maximize $\mathbf{b}^\mathsf{T}\mathbf{y}$ subject to $\mathbf{A}^\mathsf{T}\mathbf{y} \leq \mathbf{c}\,,$ which here becomes

maximize
$$4y_1 + 5y_2 + 6y_3 - 7y_4 - 8y_5$$

subject to $y_1 - y_2 \le 5$,
 $y_1 - y_3 \le 7$,
 $y_2 - y_3 \le 1$,
 $y_2 - y_4 \le 4$,
 $y_3 - y_4 \le 2$,
 $y_3 - y_5 \le 6$,
 $y_4 - y_5 \le 3$.

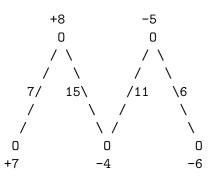
It is well known that an optimal solution to this dual problem is given by the vector \mathbf{y} with simplex multipliers from 1.(b), i.e. $\mathbf{y} = (11, 6, 5, 3, 0)^{\mathsf{T}}$.

Then the right hand sides minus the left hand sides of the dual constraint become

 $\mathbf{c} - \mathbf{A}^{\mathsf{T}} \mathbf{y} = (0, 1, 0, 1, 0, 1, 0)^{\mathsf{T}} \ge \mathbf{0}^{\mathsf{T}}$, so \mathbf{y} is a feasible solution to the dual problem.

Moreover, since $\hat{\mathbf{x}} = (4, 0, 9, 0, 15, 0, 8)^{\mathsf{T}}$, we have that $\hat{\mathbf{x}}^{\mathsf{T}}(\mathbf{c} - \mathbf{A}^{\mathsf{T}}\mathbf{y}) = 0$, which shows that the complementarity conditions are satisfied. Thus \mathbf{y} is optimal to the dual problem, and $\hat{\mathbf{x}}$ is optimal to the primal problem (which we already knew).

1.(d) If the right hand side vector **b** is changed from $(4, 5, 6, -7, -8)^{\mathsf{T}}$ to $(7, 8, -4, -5, -6)^{\mathsf{T}}$, the arc-flows corresponding to the spanning tree from 1.(b) become



Since all the arc-flows x_{ij} become non-negative, this new solution $\mathbf{x} = (7, 0, 15, 0, 11, 0, 6)^{\mathsf{T}}$ is a feasible basic solution. Moreover, since the cost-vector \mathbf{c} is the same as in 1.(b), the simplex multipliers y_i and the reduced costs r_{ij} become exactly the same as in 1.(b), i.e $r_{ij} \ge 0$. Therefore, this new solution \mathbf{x} is an optimal solution to the new problem.

The corresponding dual problem looks the same as in 1.(c), except for the objective function which is now $7y_1 + 8y_2 - 4y_3 - 5y_4 - 6y_5$. With $\mathbf{b} = (7, 8, -4, -5, -6)^{\mathsf{T}}$ and $\mathbf{y} = (11, 6, 5, 3, 0)^{\mathsf{T}}$, the dual objective value now becomes

With $\mathbf{b} = (7, 8, -4, -5, -6)^{\top}$ and $\mathbf{y} = (11, 6, 5, 3, 0)^{\top}$, the dual objective value now becomes $\mathbf{b}^{\mathsf{T}}\mathbf{y} = 77 + 48 - 20 - 15 - 0 = 90$,

while the primal objective value, with $\mathbf{c}^{\mathsf{T}} = (5, 7, 1, 4, 2, 6, 3)$ and $\mathbf{x} = (7, 0, 15, 0, 11, 0, 6)^{\mathsf{T}}$, becomes $\mathbf{c}^{\mathsf{T}}\mathbf{x} = 35 + 15 + 22 + 18 = 90$. Thus, $\mathbf{c}^{\mathsf{T}}\mathbf{x} = \mathbf{b}^{\mathsf{T}}\mathbf{y}$, as it should be.

2.

The search for the optimal points $\mathbf{y} \in L_1$ and $\mathbf{z} \in L_2$ can be formulated as the QP problem

minimize
$$\frac{1}{2} \| \mathbf{y} - \mathbf{z} \|^2 = \frac{1}{2} (\mathbf{y} - \mathbf{z})^{\mathsf{T}} (\mathbf{y} - \mathbf{z})$$

subject to $\begin{bmatrix} 1 & -1 & 1 \\ 1 & 1 & -1 \end{bmatrix} \mathbf{y} = \begin{pmatrix} 1 \\ 1 \end{pmatrix},$
 $\begin{bmatrix} 1 & -1 & -1 \\ -1 & 1 & -1 \end{bmatrix} \mathbf{z} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}.$

As the hint indicates, a nullspace method may make sense:

The system $\begin{bmatrix} 1 & -1 & 1 \\ 1 & 1 & -1 \end{bmatrix} \mathbf{y} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ is equivalent to $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \end{bmatrix} \mathbf{y} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, with the general solution $\mathbf{y} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + t \cdot \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} = \mathbf{y}_0 + t \cdot \mathbf{d}$, where t is an arbitrary real number. The system $\begin{bmatrix} 1 & -1 & -1 \\ -1 & 1 & -1 \end{bmatrix} \mathbf{z} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ is equivalent to $\begin{bmatrix} 1 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \mathbf{z} = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$, with the general solution $\mathbf{z} = \begin{pmatrix} 0 \\ 0 \\ -1 \end{pmatrix} + s \cdot \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} = \mathbf{z}_0 + s \cdot \mathbf{p}$, where s is an arbitrary real number.

If these expressions are plugged into the objective function, the following unconstrained QP problem in the variables t and s is obtained: minimize $\frac{1}{2} \| \mathbf{y}_0 + t \cdot \mathbf{d} - \mathbf{z}_0 - s \cdot \mathbf{p} \|^2$.

One of several methods for solving this problem is as the least squares problem

minimize
$$\frac{1}{2} \| \mathbf{A}\mathbf{x} - \mathbf{b} \|^2$$
, where $\mathbf{x} = \begin{pmatrix} t \\ s \end{pmatrix}$, $\mathbf{A} = \begin{bmatrix} 0 & -1 \\ 1 & -1 \\ 1 & 0 \end{bmatrix}$ and $\mathbf{b} = \mathbf{z}_0 - \mathbf{y}_0 = \begin{pmatrix} -1 \\ 0 \\ -1 \end{pmatrix}$.
The normal equations $\mathbf{A}^{\mathsf{T}}\mathbf{A}\mathbf{x} = \mathbf{A}^{\mathsf{T}}\mathbf{b}$ become $\begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} \begin{pmatrix} t \\ s \end{pmatrix} = \begin{pmatrix} -1 \\ 1 \end{pmatrix} \Rightarrow \begin{pmatrix} t \\ \hat{s} \end{pmatrix} = \begin{pmatrix} -1/3 \\ 1/3 \end{pmatrix}$.
Then $\hat{\mathbf{y}} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + \hat{t} \cdot \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ -1/3 \\ -1/3 \end{pmatrix}$ and $\hat{\mathbf{z}} = \begin{pmatrix} 0 \\ 0 \\ -1 \end{pmatrix} + \hat{s} \cdot \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1/3 \\ 1/3 \\ -1 \end{pmatrix}$

are the optimal points we searched for.

Thus, the shortest distance between the lines is $\| \hat{\mathbf{y}} - \hat{\mathbf{z}} \| = \frac{2}{\sqrt{3}}$.

3.

The objective function is $f(\mathbf{x}) = x_1^3 - 3x_1 + x_1x_2 + \frac{1}{2}x_1^2x_2^2$ with gradient $\nabla f(\mathbf{x})^{\mathsf{T}} = \begin{pmatrix} 3x_1^2 - 3 + x_2 + x_1x_2^2 \\ x_1 + x_1^2x_2, \end{pmatrix}$, and Hessian $\mathbf{F}(\mathbf{x}) = \begin{bmatrix} 6x_1 + x_2^2 & 1 + 2x_1x_2 \\ 1 + 2x_1x_2 & x_1^2 \end{bmatrix}$. We will use the well known fact that a symmetric 2×2 matrix $\mathbf{H} = \begin{bmatrix} a & b \\ b & c \end{bmatrix}$ * is positive definite if and only if a > 0, c > 0 and $ac - b^2 > 0$, * is positive semidefinite if and only if $a \ge 0$, $c \ge 0$ and $ac - b^2 \ge 0$, which is easily verified, e.g. by an LDLT factorization. **3.(a)** If $\mathbf{x} = (0,3)^{\mathsf{T}}$ then $\nabla f(\mathbf{x}) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ and $\mathbf{F}(\mathbf{x}) = \begin{bmatrix} 9 & 1 \\ 1 & 0 \end{bmatrix}$, which is not positive semidefinite. Thus, $\mathbf{x} = (0,3)^{\mathsf{T}}$ is not a local minimum point If $\mathbf{x} = (1, -1)^{\mathsf{T}}$ then $\nabla f(\mathbf{x}) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ and $\mathbf{F}(\mathbf{x}) = \begin{bmatrix} 7 & -1 \\ -1 & 1 \end{bmatrix}$, which is positive definite. Thus, $\mathbf{x} = (1, -1)^{\mathsf{T}}$ is a local minimum point If $\mathbf{x} = (-1, 1)^{\mathsf{T}}$ then $\nabla f(\mathbf{x}) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ and $\mathbf{F}(\mathbf{x}) = \begin{vmatrix} -5 & -1 \\ -1 & 1 \end{vmatrix}$, which is not positive semidefinite. Thus, $\mathbf{x} = (-1, 1)^{\mathsf{T}}$ is not a local minimum point. **3.(b)** The given starting point for Newtons method is $\mathbf{x}^{(1)} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, with $f(\mathbf{x}^{(1)}) = -2$. Then $\nabla f(\mathbf{x}^{(1)})^{\mathsf{T}} = \begin{pmatrix} 0\\1 \end{pmatrix}$, and $\mathbf{F}(\mathbf{x}) = \begin{bmatrix} 6 & 1\\1 & 1 \end{bmatrix}$, which is positive definite. The Newton direction $\mathbf{d}^{(1)}$ is then obtained as the solution to $\mathbf{F}(\mathbf{x}^{(1)})\mathbf{d} = -\nabla f(\mathbf{x}^{(1)})^{\mathsf{T}}$, which becomes $\begin{bmatrix} 6 & 1 \\ 1 & 1 \end{bmatrix} \mathbf{d} = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$, with the unique solution $\mathbf{d}^{(1)} = \begin{pmatrix} 0.2 \\ -1.2 \end{pmatrix}$. We first try the step parameter $t_1 = 1$, so that $\mathbf{x}^{(2)} = \mathbf{x}^{(1)} + t_1 \mathbf{d}^{(1)} = \mathbf{x}^{(1)} + \mathbf{d}^{(1)} = \begin{pmatrix} 1.2 \\ -1.2 \end{pmatrix}$. Then $f(\mathbf{x}^{(2)}) = 1.2^3 - 3 \cdot 1.2 - 1.2^2 + 0.6 \cdot 1.2^3 = 1.2^2 \cdot (1.2 - 2.5 - 1 + 0.72) = -1.44 \cdot 1.58 = -2.2752 < -2 = f(\mathbf{x}^{(1)})$, so the step is accepted. The Newton iteration is thus completed and we have obtained the new iteration point

$$\mathbf{x}^{(2)} = \begin{pmatrix} 1.2 \\ -1.2 \end{pmatrix}$$
 with $f(\mathbf{x}^{(2)}) = -2.2752$.

3.(c)

First note that for all **x** with both $x_1 \ge 0$ and $x_2 \ge 0$ the following holds:

 $f(\mathbf{x}) = x_1^3 - 3x_1 + x_1x_2 + \frac{1}{2}x_1^2x_2^2 \ge x_1^3 - 3x_1.$

Then consider the one-variable function $g(x_1) = x_1^3 - 3x_1$, with $g'(x_1) = 3x_1^2 - 3$ and $g''(x_1) = 6x_1$.

Since $g''(x_1) \ge 0$ for all $x_1 \ge 0$, $g(x_1)$ is a *convex* function on the convex set $\{x_1 \in \mathbb{R} \mid x_1 \ge 0\}$.

But since g'(1) = 0, it then follows that $x_1 = 1$ is global minimum point of the convex function $g(x_1)$ on the convex set $\{x_1 \in \mathbb{R} \mid x_1 \ge 0\}$, which means that $x_1^3 - 3x_1 \ge g(1) = -2$ for all $x_1 \ge 0$.

By combining the above observations, we get that the following inequalities hold for all \mathbf{x} with $x_1 \ge 0$ and $x_2 \ge 0$:

 $f(\mathbf{x}) = x_1^3 - 3x_1 + x_1x_2 + \frac{1}{2}x_1^2x_2^2 \ge x_1^3 - 3x_1 \ge -2.$

But the point $\hat{\mathbf{x}} = (1,0)^{\mathsf{T}}$ satisfies $\hat{x}_1 \ge 0$, $\hat{x}_2 \ge 0$ and $f(\hat{\mathbf{x}}) = -2$.

Thus, $\mathbf{\hat{x}} = (1,0)^{\mathsf{T}}$ is a global optimal solution to the problem of minimizing $f(\mathbf{x})$ subject to the constraints $x_1 \ge 0$ and $x_2 \ge 0$.

4.(a)

With
$$\beta = (1, 21)$$
 and $\nu = (2, 3, ..., 19, 20)$ we get that $\mathbf{A}_{\beta} = \begin{bmatrix} 20 & 0 \\ 0 & 20 \end{bmatrix}$

The vector $\mathbf{\bar{b}}$ is obtained from $\mathbf{A}_{\beta}\mathbf{\bar{b}} = \mathbf{b} = (40, 20)^{\mathsf{T}}$, with the solution $\mathbf{\bar{b}} = (2, 1)^{\mathsf{T}}$, i.e. $x_1 = 2$ and $x_{21} = 1$ in the first feasible basic solution.

Reduced costs for the non-basic variables are given by $\mathbf{r}_{\nu}^{\mathsf{T}} = \mathbf{c}_{\nu}^{\mathsf{T}} - \mathbf{y}^{\mathsf{T}} \mathbf{A}_{\nu}$, where \mathbf{y} is obtained from $\mathbf{A}_{\beta}^{\mathsf{T}} \mathbf{y} = \mathbf{c}_{\beta} = (10, 10)^{\mathsf{T}}$, with the solution $\mathbf{y} = (0.5, 0.5)^{\mathsf{T}}$.

For each non-basic index j, we then get that

 $r_j = c_j - \mathbf{y}^{\mathsf{T}} \mathbf{a}_j = |j - 11| - 0.5(21 - j) - 0.5(j - 1) = |j - 11| - 10.$

The smallest reduced cost is obtained for j = 11 so we let k = 11.

Then $r_k = -10 < 0$ and the non-basic variable $x_k = x_{11}$ should become a basic variable.

The vector $\bar{\mathbf{a}}_k$ is obtained from $\mathbf{A}_{\beta}\bar{\mathbf{a}}_k = \mathbf{a}_k = (10, 10)^{\mathsf{T}}$, which the solution $\bar{\mathbf{a}}_k = (0.5, 0.5)^{\mathsf{T}}$.

Since both \bar{a}_{1k} and \bar{a}_{2k} are > 0, we should compare $\frac{\bar{b}_1}{\bar{a}_{1k}} = \frac{2}{0.5}$ and $\frac{\bar{b}_2}{\bar{a}_{2k}} = \frac{1}{0.5}$.

The second ratio is smallest, so $x_{\beta_2} = x_{21}$ should become a non-basic variable.

Now
$$\beta = (1, 11)$$
 and $\mathbf{A}_{\beta} = \begin{bmatrix} 20 & 10 \\ 0 & 10 \end{bmatrix}$.

The vector $\mathbf{\bar{b}}$ is obtained from $\mathbf{A}_{\beta}\mathbf{\bar{b}} = \mathbf{b} = (40, 20)^{\mathsf{T}}$, with the solution $\mathbf{\bar{b}} = (1, 2)^{\mathsf{T}}$, i.e. $x_1 = 1$ and $x_{11} = 2$ in the current feasible basic solution.

Reduced costs for the non-basic variables are given by $\mathbf{r}_{\nu}^{\mathsf{T}} = \mathbf{c}_{\nu}^{\mathsf{T}} - \mathbf{y}^{\mathsf{T}} \mathbf{A}_{\nu}$, where \mathbf{y} is obtained from $\mathbf{A}_{\beta}^{\mathsf{T}} \mathbf{y} = \mathbf{c}_{\beta} = (10, 0)^{\mathsf{T}}$, with the solution $\mathbf{y} = (0.5, -0.5)^{\mathsf{T}}$.

For each non-basic index j, we then get that $r_j = c_j - \mathbf{y}^\mathsf{T} \mathbf{a}_j = |j - 11| - 0.5(21 - j) + 0.5(j - 1) = |j - 11| + j - 11 \ge 0.$

Thus, the current feasible basic solution $x_1 = 1$, $x_{11} = 2$ and $x_j = 0$ for $j \notin \{1, 11\}$ is an optimal solution, with the optimal value $= c_1 x_1 + c_{11} x_{11} = 10$.

4.(b): Assume that $\beta = (1, q)$ where $q \in \{2, 3, ..., 21\}$. Then $\mathbf{A}_{\beta} = \begin{bmatrix} 20 & 21-q \\ 0 & q-1 \end{bmatrix}$. The vector $\mathbf{\bar{b}}$ is obtained from $\mathbf{A}_{\beta}\mathbf{\bar{b}} = \mathbf{b} = (40, 20)^{\mathsf{T}}$, with the solution

$$\bar{\mathbf{b}} = \left(\frac{3q-23}{q-1}, \frac{20}{q-1}\right)^{\mathsf{I}}$$
, i.e. $x_1 = \frac{3q-23}{q-1}$ and $x_q = \frac{20}{q-1}$ when $\beta = (1, q)$.

This is a *feasible* basic solution if and only if $3q - 23 \ge 0$, i.e. if and only if $q \in \{8, 9, \dots, 21\}$. Thus, there are 14 different feasible basic solutions with x_1 as one of the basic variables.

When $\beta = (1, q)$ and $q \in \{8, 9, \dots, 21\}$, the objective value for the corresponding feasible basic solution is $c_1x_1 + c_qx_q = 10x_1 + |q - 11|x_q$

We get two cases:

Case 1:
$$q \in \{8, 9, 10, 11\}$$
, for which $|q - 11| = 11 - q$.
Then $c_1x_1 + c_qx_q = 10x_1 + (11 - q)x_q = \frac{10(3q - 23)}{q - 1} + \frac{20(11 - q)}{q - 1} = \frac{10q - 10}{q - 1} = 10$.
Case 2: $q \in \{12, 13, \dots, 21\}$, for which $|q - 11| = q - 11$.
Then $c_1x_1 + c_qx_q = 10x_1 + (11 - q)x_q = \frac{10(3q - 23)}{q - 1} + \frac{20(q - 11)}{q - 1} = \frac{50q - 450}{q - 1} = 10 + \frac{40q - 440}{q - 1} > 10$, since $q \ge 12$.

Thus, there are 4 different optimal basic solutions with x_1 as one of the basic variables, namely the ones in Case 1 above.

5.(a)

With $\mathbf{y} = (y_1, \ldots, y_m)^\mathsf{T}$, the Lagrange function becomes

$$L(z, \mathbf{x}, \mathbf{y}) = \frac{1}{2}z^2 + \sum_{i=1}^m y_i(\|\mathbf{x} - \mathbf{p}_i\|^2 - z) =$$

= $\frac{1}{2}z^2 - \sum_{i=1}^m y_i z + \sum_{i=1}^m y_i(|\mathbf{x}^\mathsf{T}\mathbf{x} - 2\mathbf{p}_i^\mathsf{T}\mathbf{x} + \mathbf{p}_i^\mathsf{T}\mathbf{p}_i) =$
= $\frac{1}{2}z^2 - (\mathbf{e}^\mathsf{T}\mathbf{y})z + \mathbf{x}^\mathsf{T}\mathbf{x} \mathbf{e}^\mathsf{T}\mathbf{y} - 2\mathbf{x}^\mathsf{T}\mathbf{P}\mathbf{y} + \mathbf{q}^\mathsf{T}\mathbf{y},$

where **P** is a marix with the columns $\mathbf{p}_1, \ldots, \mathbf{p}_m$, while $\mathbf{q} = (\|\mathbf{p}_1\|^2, \ldots, \|\mathbf{p}_m\|^2)^\mathsf{T}$ and $\mathbf{e} = (1, \ldots, 1)^\mathsf{T}$.

To get the dual objective function, $L(z, \mathbf{x}, \mathbf{y})$ should be minimized with respect to z and \mathbf{x} .

If $\mathbf{y} = \mathbf{0}$ then $L(z, \mathbf{x}, \mathbf{0}) = \frac{1}{2}z^2$, and then minimizing z is z = 0 while \mathbf{x} can be anything. The dual objective function then becomes $\varphi(\mathbf{0}) = 0$.

If $\mathbf{y} \neq \mathbf{0}$ (and $\mathbf{y} \ge \mathbf{0}$ of course) then $\mathbf{e}^{\mathsf{T}}\mathbf{y} > 0$, and the minimizing z is $z(\mathbf{y}) = \mathbf{e}^{\mathsf{T}}\mathbf{y}$ and the minimizing \mathbf{x} is $\mathbf{x}(\mathbf{y}) = \frac{\mathbf{P}\mathbf{y}}{\mathbf{e}^{\mathsf{T}}\mathbf{y}}$. Then the dual objective function becomes

$$\varphi(\mathbf{y}) = L(z(\mathbf{y}), \mathbf{x}(\mathbf{y}), \mathbf{y}) = -\frac{1}{2} (\mathbf{e}^{\mathsf{T}} \mathbf{y})^2 + \mathbf{q}^{\mathsf{T}} \mathbf{y} - \frac{\mathbf{y}^{\mathsf{T}} \mathbf{P}^{\mathsf{T}} \mathbf{P} \mathbf{y}}{\mathbf{e}^{\mathsf{T}} \mathbf{y}}.$$

If
$$\mathbf{P} = \mathbf{I} \ (2 \times 2)$$
, and thus $\mathbf{q} = \mathbf{e} = (1, 1)^{\mathsf{T}}$, then
 $\varphi(\mathbf{y}) = -\frac{1}{2}(y_1 + y_2)^2 + y_1 + y_2 - \frac{y_1^2 + y_2^2}{y_1 + y_2}$.

In particular, the suggested vector $\hat{\mathbf{y}} = (0.25, 0.25)^{\mathsf{T}}$ is a feasible solution to the dual problem, with the dual objective value $\varphi(\hat{\mathbf{y}}) = 0.25$.

Let
$$\hat{z} = z(\hat{\mathbf{y}}) = \mathbf{e}^{\mathsf{T}}\hat{\mathbf{y}} = 0.5$$
 and $\hat{\mathbf{x}} = \mathbf{x}(\hat{\mathbf{y}}) = \frac{\mathbf{P}\hat{\mathbf{y}}}{\mathbf{e}^{\mathsf{T}}\hat{\mathbf{y}}} = (0.5, 0.5)^{\mathsf{T}}$.

Then \hat{z} and $\hat{\mathbf{x}}$ satisfy the constraints in the original (primal) problem P, and is thus a feasible solution to P. The primal objective value of this solution is $\frac{1}{2}\hat{z}^2 = 0.25 = \varphi(\hat{\mathbf{y}})$.

According to a well known theorem, this implies that \hat{z} and $\hat{\mathbf{x}}$ is an optimal solution to P while $\hat{\mathbf{y}}$ is an optimal solution to D.