Solutions to exam in SF1811 Optimization, April 7, 2015

1.(a) $+(b)$

The network corresponding to the given LP problem can be illustrated by the left figure below, where the supply at the nodes (i.e. the components in the vector \mathbf{b}), and the unit costs of the arcs (i.e. the components in the vector \mathbf{c}) are written in the figure.
All arcs are directed from left to right. Negative supply means demand.
The suggested solution $\hat{\mathbf{x}}=(4,0,9,0,15,0,8)^{\top}$ can be illustrated by the spanning tree in the right figure below, with the arc-flows written on the arcs.

The simplex multipliers y_{i} for the nodes are calculated from $y_{5}=0$ and $y_{i}-y_{j}=c_{i j}$ for all ars (i, j) in the spanning tree (left figure below), whereafter the reduced cost for the non-basic variables are calculated from $r_{i j}=c_{i j}-y_{i}+y_{j}$ (right figure below).

$$
\begin{aligned}
& r 13=7-11+5=1 \quad r 35=6-5+0=1 \\
& 0-\cdots-0-\cdots-0
\end{aligned}
$$

Since all $r_{i j} \geq 0$, the suggested solution $\hat{\mathbf{x}}$ is optimal.
1.(c) When the primal problem is on the standard form

$$
\begin{aligned}
\operatorname{minimize} & \mathbf{c}^{\top} \mathbf{x} \\
\text { subject to } & \mathbf{A x}=\mathbf{b}, \\
& \mathbf{x} \geq \mathbf{0},
\end{aligned}
$$

the corresponding dual problem becomes maximize $\mathbf{b}^{\top} \mathbf{y}$ subject to $\mathbf{A}^{\top} \mathbf{y} \leq \mathbf{c}$, which here becomes

$$
\begin{array}{cl}
\operatorname{maximize} & 4 y_{1}+5 y_{2}+6 y_{3}-7 y_{4}-8 y_{5} \\
\text { subject to } & y_{1}-y_{2} \leq 5, \\
& y_{1}-y_{3} \leq 7, \\
& y_{2}-y_{3} \leq 1, \\
& y_{2}-y_{4} \leq 4, \\
& y_{3}-y_{4} \leq 2, \\
& y_{3}-y_{5} \leq 6, \\
& y_{4}-y_{5} \leq 3 .
\end{array}
$$

It is well known that an optimal solution to this dual problem is given by the vector \mathbf{y} with simplex multipliers from 1.(b), i.e. $\mathbf{y}=(11,6,5,3,0)^{\top}$.
Then the right hand sides minus the left hand sides of the dual constraint become $\mathbf{c}-\mathbf{A}^{\top} \mathbf{y}=(0,1,0,1,0,1,0)^{\top} \geq \mathbf{0}^{\top}$, so \mathbf{y} is a feasible solution to the dual problem.
Moreover, since $\hat{\mathbf{x}}=(4,0,9,0,15,0,8)^{\top}$, we have that $\hat{\mathbf{x}}^{\top}\left(\mathbf{c}-\mathbf{A}^{\top} \mathbf{y}\right)=0$, which shows that the complementarity conditions are satisfied. Thus \mathbf{y} is optimal to the dual problem, and $\hat{\mathbf{x}}$ is optimal to the primal problem (which we already knew).
1.(d) If the right hand side vector \mathbf{b} is changed from $(4,5,6,-7,-8)^{\top}$ to $(7,8,-4,-5,-6)^{\top}$, the arc-flows corresponding to the spanning tree from 1.(b) become

Since all the arc-flows $x_{i j}$ become non-negative, this new solution $\mathbf{x}=(7,0,15,0,11,0,6)^{\top}$ is a feasible basic solution. Moreover, since the cost-vector \mathbf{c} is the same as in 1.(b), the simplex multipliers y_{i} and the reduced costs $r_{i j}$ become exactly the same as in 1.(b), i.e $r_{i j} \geq 0$. Therefore, this new solution \mathbf{x} is an optimal solution to the new problem.
The corresponding dual problem looks the same as in 1.(c), except for the objective function which is now $7 y_{1}+8 y_{2}-4 y_{3}-5 y_{4}-6 y_{5}$.
With $\mathbf{b}=(7,8,-4,-5,-6)^{\top}$ and $\mathbf{y}=(11,6,5,3,0)^{\top}$, the dual objective value now becomes $\mathbf{b}^{\top} \mathbf{y}=77+48-20-15-0=90$,
while the primal objective value, with $\mathbf{c}^{\boldsymbol{\top}}=(5,7,1,4,2,6,3)$ and $\mathbf{x}=(7,0,15,0,11,0,6)^{\top}$, becomes $\mathbf{c}^{\top} \mathbf{x}=35+15+22+18=90$. Thus, $\mathbf{c}^{\top} \mathbf{x}=\mathbf{b}^{\top} \mathbf{y}$, as it should be.
2.

The search for the optimal points $\mathbf{y} \in L_{1}$ and $\mathbf{z} \in L_{2}$ can be formulated as the QP problem

$$
\begin{aligned}
\operatorname{minimize} & \frac{1}{2}\|\mathbf{y}-\mathbf{z}\|^{2}=\frac{1}{2}(\mathbf{y}-\mathbf{z})^{\top}(\mathbf{y}-\mathbf{z}) \\
\text { subject to } & {\left[\begin{array}{rrr}
1 & -1 & 1 \\
1 & 1 & -1
\end{array}\right] \mathbf{y}=\binom{1}{1} } \\
& {\left[\begin{array}{rrr}
1 & -1 & -1 \\
-1 & 1 & -1
\end{array}\right] \mathbf{z}=\binom{1}{1} }
\end{aligned}
$$

As the hint indicates, a nullspace method may make sense:
The system $\left[\begin{array}{rrr}1 & -1 & 1 \\ 1 & 1 & -1\end{array}\right] \mathbf{y}=\binom{1}{1}$ is equivalent to $\left[\begin{array}{rrr}1 & 0 & 0 \\ 0 & 1 & -1\end{array}\right] \mathbf{y}=\binom{1}{0}$, with the general solution $\mathbf{y}=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)+t \cdot\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right)=\mathbf{y}_{0}+t \cdot \mathbf{d}$, where t is an arbitrary real number.
The system $\left[\begin{array}{rrr}1 & -1 & -1 \\ -1 & 1 & -1\end{array}\right] \mathbf{z}=\binom{1}{1}$ is equivalent to $\left[\begin{array}{rrr}1 & -1 & 0 \\ 0 & 0 & 1\end{array}\right] \mathbf{z}=\binom{0}{-1}$, with the general solution $\mathbf{z}=\left(\begin{array}{r}0 \\ 0 \\ -1\end{array}\right)+s \cdot\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)=\mathbf{z}_{0}+s \cdot \mathbf{p}$, where s is an arbitrary real number.
If these expressions are plugged into the objective function, the following unconstrained QP problem in the variables t and s is obtained: minimize $\frac{1}{2}\left\|\mathbf{y}_{0}+t \cdot \mathbf{d}-\mathbf{z}_{0}-s \cdot \mathbf{p}\right\|^{2}$.
One of several methods for solving this problem is as the least squares problem $\operatorname{minimize} \frac{1}{2}\|\mathbf{A x}-\mathbf{b}\|^{2}$, where $\mathbf{x}=\binom{t}{s}, \quad \mathbf{A}=\left[\begin{array}{rr}0 & -1 \\ 1 & -1 \\ 1 & 0\end{array}\right]$ and $\mathbf{b}=\mathbf{z}_{0}-\mathbf{y}_{0}=\left(\begin{array}{r}-1 \\ 0 \\ -1\end{array}\right)$.
The normal equations $\mathbf{A}^{\top} \mathbf{A} \mathbf{x}=\mathbf{A}^{\top} \mathbf{b}$ become $\left[\begin{array}{rr}2 & -1 \\ -1 & 2\end{array}\right]\binom{t}{s}=\binom{-1}{1} \Rightarrow\binom{\hat{t}}{\hat{s}}=\binom{-1 / 3}{1 / 3}$.
Then $\hat{\mathbf{y}}=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)+\hat{t} \cdot\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right)=\left(\begin{array}{c}1 \\ -1 / 3 \\ -1 / 3\end{array}\right)$ and $\hat{\mathbf{z}}=\left(\begin{array}{r}0 \\ 0 \\ -1\end{array}\right)+\hat{s} \cdot\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)=\left(\begin{array}{l}1 / 3 \\ 1 / 3 \\ -1\end{array}\right)$
are the optimal points we searched for.
Thus, the shortest distance between the lines is $\|\hat{\mathbf{y}}-\hat{\mathbf{z}}\|=\frac{2}{\sqrt{3}}$.
3.

The objective function is $f(\mathbf{x})=x_{1}^{3}-3 x_{1}+x_{1} x_{2}+\frac{1}{2} x_{1}^{2} x_{2}^{2}$,
with gradient $\nabla f(\mathbf{x})^{\top}=\binom{3 x_{1}^{2}-3+x_{2}+x_{1} x_{2}^{2}}{x_{1}+x_{1}^{2} x_{2}}$, ,
and Hessian $\mathbf{F}(\mathbf{x})=\left[\begin{array}{cc}6 x_{1}+x_{2}^{2} & 1+2 x_{1} x_{2} \\ 1+2 x_{1} x_{2} & x_{1}^{2}\end{array}\right]$.
We will use the well known fact that a symmetric 2×2 matrix $\mathbf{H}=\left[\begin{array}{ll}a & b \\ b & c\end{array}\right]$

* is positive definite if and only if $a>0, c>0$ and $a c-b^{2}>0$,
* is positive semidefinite if and only if $a \geq 0, c \geq 0$ and $a c-b^{2} \geq 0$,
which is easily verified, e.g. by an LDLT factorization.
3.(a) If $\mathbf{x}=(0,3)^{\top}$ then $\nabla f(\mathbf{x})=\binom{0}{0}$ and $\mathbf{F}(\mathbf{x})=\left[\begin{array}{ll}9 & 1 \\ 1 & 0\end{array}\right]$, which is not positive semidefinite. Thus, $\mathbf{x}=(0,3)^{\top}$ is not a local minimum point.
If $\mathbf{x}=(1,-1)^{\top}$ then $\nabla f(\mathbf{x})=\binom{0}{0}$ and $\mathbf{F}(\mathbf{x})=\left[\begin{array}{rr}7 & -1 \\ -1 & 1\end{array}\right]$, which is positive definite. Thus, $\mathbf{x}=(1,-1)^{\top}$ is a local minimum point.
If $\mathbf{x}=(-1,1)^{\top}$ then $\nabla f(\mathbf{x})=\binom{0}{0}$ and $\mathbf{F}(\mathbf{x})=\left[\begin{array}{rr}-5 & -1 \\ -1 & 1\end{array}\right]$, which is not positive semidefinite. Thus, $\mathbf{x}=(-1,1)^{\top}$ is not a local minimum point.
3.(b) The given starting point for Newtons method is $\mathbf{x}^{(1)}=\binom{1}{0}$, with $f\left(\mathbf{x}^{(1)}\right)=-2$. Then $\nabla f\left(\mathbf{x}^{(1)}\right)^{\top}=\binom{0}{1}$, and $\mathbf{F}(\mathbf{x})=\left[\begin{array}{ll}6 & 1 \\ 1 & 1\end{array}\right]$, which is positive definite.
The Newton direction $\mathbf{d}^{(1)}$ is then obtained as the solution to $\mathbf{F}\left(\mathbf{x}^{(1)}\right) \mathbf{d}=-\nabla f\left(\mathbf{x}^{(1)}\right)^{\top}$, which becomes $\left[\begin{array}{ll}6 & 1 \\ 1 & 1\end{array}\right] \mathbf{d}=\binom{0}{-1}$, with the unique solution $\mathbf{d}^{(1)}=\binom{0.2}{-1.2}$.
We first try the step parameter $t_{1}=1$, so that $\mathbf{x}^{(2)}=\mathbf{x}^{(1)}+t_{1} \mathbf{d}^{(1)}=\mathbf{x}^{(1)}+\mathbf{d}^{(1)}=\binom{1.2}{-1.2}$.
Then $f\left(\mathbf{x}^{(2)}\right)=1.2^{3}-3 \cdot 1.2-1.2^{2}+0.6 \cdot 1.2^{3}=1.2^{2} \cdot(1.2-2.5-1+0.72)=$ $=-1.44 \cdot 1.58=-2.2752<-2=f\left(\mathbf{x}^{(1)}\right)$, so the step is accepted.
The Newton iteration is thus completed and we have obtained the new iteration point
$\mathbf{x}^{(2)}=\binom{1.2}{-1.2}$ with $f\left(\mathbf{x}^{(2)}\right)=-2.2752$.

3.(c)

First note that for all \mathbf{x} with both $x_{1} \geq 0$ and $x_{2} \geq 0$ the following holds: $f(\mathbf{x})=x_{1}^{3}-3 x_{1}+x_{1} x_{2}+\frac{1}{2} x_{1}^{2} x_{2}^{2} \geq x_{1}^{3}-3 x_{1}$.
Then consider the one-variable function $g\left(x_{1}\right)=x_{1}^{3}-3 x_{1}$, with $g^{\prime}\left(x_{1}\right)=3 x_{1}^{2}-3$ and $g^{\prime \prime}\left(x_{1}\right)=6 x_{1}$.
Since $g^{\prime \prime}\left(x_{1}\right) \geq 0$ for all $x_{1} \geq 0, g\left(x_{1}\right)$ is a convex function on the convex set $\left\{x_{1} \in \mathbb{R} \mid x_{1} \geq 0\right\}$.
But since $g^{\prime}(1)=0$, it then follows that $x_{1}=1$ is global minimum point of the convex function $g\left(x_{1}\right)$ on the convex set $\left\{x_{1} \in \mathbb{R} \mid x_{1} \geq 0\right\}$,
which means that $x_{1}^{3}-3 x_{1} \geq g(1)=-2$ for all $x_{1} \geq 0$.
By combining the above observations, we get that the following inequalities hold for all \mathbf{x} with $x_{1} \geq 0$ and $x_{2} \geq 0$:
$f(\mathbf{x})=x_{1}^{3}-3 x_{1}+x_{1} x_{2}+\frac{1}{2} x_{1}^{2} x_{2}^{2} \geq x_{1}^{3}-3 x_{1} \geq-2$.
But the point $\hat{\mathbf{x}}=(1,0)^{\top}$ satisfies $\hat{x}_{1} \geq 0, \hat{x}_{2} \geq 0$ and $f(\hat{\mathbf{x}})=-2$.
Thus, $\hat{\mathbf{x}}=(1,0)^{\top}$ is a global optimal solution to the problem of minimizing $f(\mathbf{x})$ subject to the constraints $x_{1} \geq 0$ and $x_{2} \geq 0$.

4.(a)

With $\beta=(1,21)$ and $\nu=(2,3, \ldots, 19,20)$ we get that $\mathbf{A}_{\beta}=\left[\begin{array}{cc}20 & 0 \\ 0 & 20\end{array}\right]$.
The vector $\overline{\mathbf{b}}$ is obtained from $\mathbf{A}_{\beta} \overline{\mathbf{b}}=\mathbf{b}=(40,20)^{\top}$, with the solution $\overline{\mathbf{b}}=(2,1)^{\top}$, i.e. $x_{1}=2$ and $x_{21}=1$ in the first feasible basic solution.

Reduced costs for the non-basic variables are given by $\mathbf{r}_{\nu}^{\top}=\mathbf{c}_{\nu}^{\top}-\mathbf{y}^{\top} \mathbf{A}_{\nu}$, where \mathbf{y} is obtained from $\mathbf{A}_{\beta}^{\top} \mathbf{y}=\mathbf{c}_{\beta}=(10,10)^{\top}$, with the solution $\mathbf{y}=(0.5,0.5)^{\top}$.
For each non-basic index j, we then get that
$r_{j}=c_{j}-\mathbf{y}^{\top} \mathbf{a}_{j}=|j-11|-0.5(21-j)-0.5(j-1)=|j-11|-10$.
The smallest reduced cost is obtained for $j=11$ so we let $k=11$.
Then $r_{k}=-10<0$ and the non-basic variable $x_{k}=x_{11}$ should become a basic variable.
The vector $\overline{\mathbf{a}}_{k}$ is obtained from $\mathbf{A}_{\beta} \overline{\mathbf{a}}_{k}=\mathbf{a}_{k}=(10,10)^{\top}$, whith the solution $\overline{\mathbf{a}}_{k}=(0.5,0.5)^{\top}$.
Since both $\bar{a}_{1 k}$ and $\bar{a}_{2 k}$ are >0, we should compare $\frac{\bar{b}_{1}}{\bar{a}_{1 k}}=\frac{2}{0.5}$ and $\frac{\bar{b}_{2}}{\bar{a}_{2 k}}=\frac{1}{0.5}$.
The second ratio is smallest, so $x_{\beta_{2}}=x_{21}$ should become a non-basic variable.
Now $\beta=(1,11)$ and $\mathbf{A}_{\beta}=\left[\begin{array}{cc}20 & 10 \\ 0 & 10\end{array}\right]$.
The vector $\overline{\mathbf{b}}$ is obtained from $\mathbf{A}_{\beta} \overline{\mathbf{b}}=\mathbf{b}=(40,20)^{\top}$, with the solution $\overline{\mathbf{b}}=(1,2)^{\top}$, i.e. $x_{1}=1$ and $x_{11}=2$ in the current feasible basic solution.

Reduced costs for the non-basic variables are given by $\mathbf{r}_{\nu}^{\top}=\mathbf{c}_{\nu}^{\top}-\mathbf{y}^{\top} \mathbf{A}_{\nu}$, where \mathbf{y} is obtained from $\mathbf{A}_{\beta}^{\top} \mathbf{y}=\mathbf{c}_{\beta}=(10,0)^{\top}$, with the solution $\mathbf{y}=(0.5,-0.5)^{\top}$.
For each non-basic index j, we then get that
$r_{j}=c_{j}-\mathbf{y}^{\top} \mathbf{a}_{j}=|j-11|-0.5(21-j)+0.5(j-1)=|j-11|+j-11 \geq 0$.
Thus, the current feasible basic solution $x_{1}=1, x_{11}=2$ and $x_{j}=0$ for $j \notin\{1,11\}$ is an optimal solution, with the optimal value $=c_{1} x_{1}+c_{11} x_{11}=10$.
4.(b): Assume that $\beta=(1, q)$ where $q \in\{2,3, \ldots, 21\}$. Then $\mathbf{A}_{\beta}=\left[\begin{array}{cc}20 & 21-q \\ 0 & q-1\end{array}\right]$.

The vector $\overline{\mathbf{b}}$ is obtained from $\mathbf{A}_{\beta} \overline{\mathbf{b}}=\mathbf{b}=(40,20)^{\top}$, with the solution
$\overline{\mathbf{b}}=\left(\frac{3 q-23}{q-1}, \frac{20}{q-1}\right)^{\top}$, i.e. $x_{1}=\frac{3 q-23}{q-1}$ and $x_{q}=\frac{20}{q-1}$ when $\beta=(1, q)$.
This is a feasible basic solution if and only if $3 q-23 \geq 0$, i.e. if and only if $q \in\{8,9, \ldots, 21\}$.
Thus, there are 14 different feasible basic solutions with x_{1} as one of the basic variables.

When $\beta=(1, q)$ and $q \in\{8,9, \ldots, 21\}$, the objective value for the corresponding feasible basic solution is $c_{1} x_{1}+c_{q} x_{q}=10 x_{1}+|q-11| x_{q}$

We get two cases:
Case 1: $q \in\{8,9,10,11\}$, for which $|q-11|=11-q$.
Then $c_{1} x_{1}+c_{q} x_{q}=10 x_{1}+(11-q) x_{q}=\frac{10(3 q-23)}{q-1}+\frac{20(11-q)}{q-1}=\frac{10 q-10}{q-1}=10$.
Case 2: $q \in\{12,13, \ldots, 21\}$, for which $|q-11|=q-11$.
Then $c_{1} x_{1}+c_{q} x_{q}=10 x_{1}+(11-q) x_{q}=\frac{10(3 q-23)}{q-1}+\frac{20(q-11)}{q-1}=\frac{50 q-450}{q-1}=$ $=10+\frac{40 q-440}{q-1}>10$, since $q \geq 12$.
Thus, there are 4 different optimal basic solutions with x_{1} as one of the basic variables, namely the ones in Case 1 above.

5.(a)

With $\mathbf{y}=\left(y_{1}, \ldots, y_{m}\right)^{\top}$, the Lagrange function becomes
$L(z, \mathbf{x}, \mathbf{y})=\frac{1}{2} z^{2}+\sum_{i=1}^{m} y_{i}\left(\left\|\mathbf{x}-\mathbf{p}_{i}\right\|^{2}-z\right)=$
$=\frac{1}{2} z^{2}-\sum_{i=1}^{m} y_{i} z+\sum_{i=1}^{m} y_{i}\left(\mathbf{x}^{\top} \mathbf{x}-2 \mathbf{p}_{i}^{\top} \mathbf{x}+\mathbf{p}_{i}^{\top} \mathbf{p}_{i}\right)=$
$=\frac{1}{2} z^{2}-\left(\mathbf{e}^{\top} \mathbf{y}\right) z+\mathbf{x}^{\top} \mathbf{x} \mathbf{e}^{\top} \mathbf{y}-2 \mathbf{x}^{\top} \mathbf{P} \mathbf{y}+\mathbf{q}^{\top} \mathbf{y}$,
where \mathbf{P} is a marix with the columns $\mathbf{p}_{1}, \ldots, \mathbf{p}_{m}$,
while $\mathbf{q}=\left(\left\|\mathbf{p}_{1}\right\|^{2}, \ldots,\left\|\mathbf{p}_{m}\right\|^{2}\right)^{\top}$ and $\mathbf{e}=(1, \ldots, 1)^{\top}$.
To get the dual objective function, $L(z, \mathbf{x}, \mathbf{y})$ should be minimized with respect to z and \mathbf{x}.
If $\mathbf{y}=\mathbf{0}$ then $L(z, \mathbf{x}, \mathbf{0})=\frac{1}{2} z^{2}$, and then minimizing z is $z=0$
while \mathbf{x} can be anything. The dual objective function then becomes $\varphi(\mathbf{0})=0$.
If $\mathbf{y} \neq \mathbf{0}$ (and $\mathbf{y} \geq \mathbf{0}$ of course) then $\mathbf{e}^{\top} \mathbf{y}>0$, and the minimizing z is $z(\mathbf{y})=\mathbf{e}^{\top} \mathbf{y}$ and the minimizing \mathbf{x} is $\mathbf{x}(\mathbf{y})=\frac{\mathbf{P y}}{\mathbf{e}^{\top} \mathbf{y}}$. Then the dual objective function becomes
$\varphi(\mathbf{y})=L(z(\mathbf{y}), \mathbf{x}(\mathbf{y}), \mathbf{y})=-\frac{1}{2}\left(\mathbf{e}^{\top} \mathbf{y}\right)^{2}+\mathbf{q}^{\top} \mathbf{y}-\frac{\mathbf{y}^{\top} \mathbf{P}^{\top} \mathbf{P} \mathbf{y}}{\mathbf{e}^{\top} \mathbf{y}}$.

5.(b)

If $\mathbf{P}=\mathbf{I}(2 \times 2)$, and thus $\mathbf{q}=\mathbf{e}=(1,1)^{\top}$, then
$\varphi(\mathbf{y})=-\frac{1}{2}\left(y_{1}+y_{2}\right)^{2}+y_{1}+y_{2}-\frac{y_{1}^{2}+y_{2}^{2}}{y_{1}+y_{2}}$.
In particular, the suggested vector $\hat{\mathbf{y}}=(0.25,0.25)^{\top}$ is a feasible solution to the dual problem, with the dual objective value $\varphi(\hat{\mathbf{y}})=0.25$.
Let $\hat{z}=z(\hat{\mathbf{y}})=\mathbf{e}^{\top} \hat{\mathbf{y}}=0.5$ and $\hat{\mathbf{x}}=\mathbf{x}(\hat{\mathbf{y}})=\frac{\mathbf{P} \hat{\mathbf{y}}}{\mathbf{e}^{\top} \hat{\mathbf{y}}}=(0.5,0.5)^{\top}$.
Then \hat{z} and $\hat{\mathbf{x}}$ satisfy the constraints in the original (primal) problem P , and is thus a feasible solution to P . The primal objective value of this solution is $\frac{1}{2} \hat{z}^{2}=0.25=\varphi(\hat{\mathbf{y}})$.
According to a well known theorem, this implies that \hat{z} and $\hat{\mathbf{x}}$ is an optimal solution to P while $\hat{\mathbf{y}}$ is an optimal solution to D .

