
Solutions to exam in SF1811 Optimization, April 10, 2017

1.(a) We have an LP problem on the standard form

minimize cTx subject to Ax = b, x ≥ 0,

where A =

[
1 1 2 −3
0 1 1 −2

]
, b =

(
4
3

)
and cT = ( 2, 2, 3, −4 ).

If x1 and x2 are the basic variables, then β = (1, 2) and ν = (3, 4),

with Aβ =

[
1 1
0 1

]
and Aν =

[
2 −3
1 −2

]
.

The values of the current basic variables are xβ = b̄, where the vector b̄ is
calculated from the system Aβb̄ = b, i.e.[

1 1
0 1

](
b̄1
b̄2

)
=

(
4
3

)
, with the solution b̄ =

(
b̄1
b̄2

)
=

(
1
3

)
.

The vector y with simplex multipliers is obtained from the system AT
βy = cβ, i.e.[

1 0
1 1

](
y1
y2

)
=

(
2
2

)
, with the solution y =

(
y1
y2

)
=

(
2
0

)
.

Then the reduced costs for the non-basic variables are obtained from

rTν = cTν − yTAν = (3 ,−4)− (2 , 0)

[
2 −3
1 −2

]
= (−1 , 2).

Since rν1 = r3 = −1 is smallest, and < 0, we let x3 increase from zero.
Then we should calculate the vector ā3 from the system Aβā3 = a3, i.e.[

1 1
0 1

](
ā13
ā23

)
=

(
2
1

)
, with the solution ā3 =

(
ā13
ā23

)
=

(
1
1

)
.

The largest permitted value of the new basic variable x3 is then given by

tmax= min
i

{
b̄i
āi3
| āi3 > 0

}
= min

{
1

1
,
3

1
,

}
=

1

1
=

b̄1
ā13

.

Minimizing index is i = 1, which implies that xβ1 = x1 should no longer be a basic
variable. Its place as basic variable is taken by x3, so that β = (3, 2) and ν = (1, 4).

The corresponding basic matrix is Aβ =

[
2 1
1 1

]
, while Aν =

[
1 −3
0 −2

]
.

The values of the current basic variables are xβ = b̄, where the vector b̄ is
calculated from the system Aβb̄ = b, i.e.[

2 1
1 1

](
b̄1
b̄2

)
=

(
4
3

)
, with the solution b̄ =

(
b̄1
b̄2

)
=

(
1
2

)
.

The vector y with simplex multipliers is obtained from the system AT
βy = cβ, i.e.[

2 1
1 1

](
y1
y2

)
=

(
3
2

)
, with the solution y =

(
y1
y2

)
=

(
1
1

)
.

Then the reduced costs for the non-basic variables are obtained from

rTν = cTν − yTAν = (2 ,−4)− (1 , 1)

[
1 −3
0 −2

]
= (1 , 1).

Since rTν ≥ 0T, the current BFS is optimal: x̂ = (0 , 2 , 1 , 0)T with cTx̂ = 7.
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1.(b)
Now we consider the same LP problem as above, but with the cost vector changed
from cT = ( 2, 2, 3, −4 ) to cT = ( 2, 2, 3, −6 ).

Then the first iteration becomes the same as in 1.(a). In the second iteration, when β = (3, 2)
and ν = (1, 4), the reduced costs for the non-basic variables now become

rTν = cTν − yTAν = (2 ,−6)− (1 , 1)

[
1 −3
0 −2

]
= (1 ,−1).

Since rν2 = r4 = −1 is smallest, and < 0, we let x4 increase from zero.
Then we should calculate the vector ā4 from the system Aβā4 = a4, i.e.[

2 1
1 1

](
ā14
ā24

)
=

(
−3
−2

)
, with the solution ā4 =

(
ā14
ā24

)
=

(
−1
−1

)
.

Since ā4 ≤ 0, the simplex method stops here, with the conclusion that there is
no optimal solution to the problem.

If x4 = t > 0 and x1 = 0, the current basic variables become xβ = b̄− ā4t,
i.e. x2 = 2+t and x3 = 1+t, while the objective value becomes z = z̄ + r4t = 7−t.

Thus, x(t) = (0 , 2+t , 1+t , t)T satisfies Ax(t) = b and x(t) ≥ 0 for all t ≥ 0,
and z(t) = cTx(t) = 7−t→ −∞ when t→ +∞.

1.(c)
If the primal problem is on the standard form

minimize cTx subject to Ax = b, x ≥ 0,

the corresponding dual problem is: maximize bTy subject to ATy ≤ c,
which becomes

maximize 4y1 + 3y2
subject to y1 ≤ 2,

y1 + y2 ≤ 2,
2y1 + y2 ≤ 3,
−3y1 − 2y2 ≤ c4.

If c4 = −4, as in 1.(a), the the feasible region to the dual problem becomes a triangle
with corner points (0 , 2)T, (1 , 1)T and (2 ,−1)T. (Figure is omitted here.)

If c4 = −6, as in 1.(b), then the feasible region to the dual problem becomes empty,
which means that there are no feasible solutions to the dual problem.
This is consistent with the fact that the primal problem in 1.(b) has a half line x(t)
of feasible solutions for which cTx(t)→ −∞. (Figure is omitted here.)
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2.(a) The considered network is illustrated by FIGURE 1 below, where the
supply at the nodes are written in the figure. Negative supply means demand.
The arc fr̊an Node2 to Node3 is directed from left to right.
All other arc are directed downwards in the figure.
The cost per unit flow is equal to 1 for all arcs.
The matrix A and the vector b are as follows:

A =


1 1 0 0 0
−1 0 1 1 0

0 −1 −1 0 1
0 0 0 −1 −1

 and b =


u

10−u
−v
−10+v

.

The equation corresponding to node 4 can be removed since it is a linear combination
of the other three equations, but that is not necessary and has not been done here.

2.(b) The basic solution x corresponding to the spanning tree T1 in FIGURE 2 below
has been calculated as follows:
x12 = u, due to the flow balance requirement in node 1,
x23 = 10, due to the flow balance requirement in node 2,
x34 = 10−v, due to the flow balance requirement in node 3.
Then the flow balance requirement in node 4 is also fulfilled,
The basic solution corresponding to T1 is thus x = (u, 0, 10, 0, 10−v)T,
which is a BFS since x ≥ 0, and cTx = 20+u−v.

Node1 Node1

u u

o o

/ \ /

/ \ /

/ \ u

/ \ /

Node2 / \ Node3 Node2 / Node3

10-u o---------->o -v 10-u o--- 10 --->o -v

\ / /

\ / /

\ / 10-v

\ / /

\ / /

o o

-(10-v) -(10-v)

Node4 Node4

FIGURE 1 FIGURE 2

The simplex multipliers yi for the nodes are calculated by y4 = 0 and yi−yj = cij for all arcs
(i, j) in the spanning tree. Using that cij = 1 for all arcs, the yi are calculated in the order
y4 = 0, y3 = y4 + c34 = 1, y2 = y3 + c23 = 2, y1 = y2 + c12 = 3.
Then the reduced cost for the two non-basic variables are calculated by rij = cij − yi + yj ,
i.e. r13 = c13 − y1 + y3 = −1 and r24 = c24 − y2 + y4 = −1, which implies that a lower
objective value can be obtained by increasing x13 or x24.
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Let us choose to set x13 = t (while x24 = 0) and let t increase from zero.
Then the basic variables (i.e. the arc-flows in the tree) are changed as follows:
x12 = u−t, due to the flow balance requirement in node 1,
x23 = 10−t, due to the flow balance requirement in node 2,
x34 = 10−v (unchanged), due to the flow balance requirement in node 3.
Then the flow balance requirement in node 4 is also fulfilled,
By letting t = u the solution x̃ = (0, u, 10−u, 0, 10−v)T is obtained, se FIGURE 3.
This is clearly a BFS, since it corresponds to a spanning tree and x̃ ≥ 0.
Further, cTx̃ = 20−v < 20+u−v = cTx.
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2.(c) The basic solution corresponding to the spanning tree T2 in FIGURE 4
has been calculated as follows:
x13 = u, due to the flow balance requirement in node 1,
x23 = v−u, due to the flow balance requirement in node 3,
x24 = 10−v, due to the flow balance requirement in node 2.
Then the flow balance requirement in node 4 is also fulfilled,
The basic solution corresponding to T2 is thus x̂ = (0, u, v−u, 10−v, 0)T,
which is illustrated in FIGURE 4.
If 0 < v < u < 10 then x̂ is not feasible, since x̂23 = v−u < 0, and thus not optimal,.
If 0 < u < v < 10 then x̂ is a BFS, since x̂ ≥ 0. It remains to show that it is optimal.
The simplex multipliers yi for the nodes are calculated by y4 = 0 and yi−yj = cij for all arcs
(i, j) in the spanning tree. Using that cij = 1 for all arcs, the yi are calculated in the order
y4 = 0, y2 = y4 + c24 = 1, y3 = y2 − c23 = 0, y1 = y3 + c23 = 1.
Then the reduced cost for the two non-basic variables are calculated by rij = cij − yi + yj ,
which give that r12 = c12 − y1 + y2 = 1 and r34 = c34 − y3 + y4 = 1.
Since both r12 > 0 and r34 > 0, the current BFS x̂ is a unique optimal solution.
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3.(a) When C = 0, the considered problem can be written

minimize 1
2 xTHx + cTx subject to Ax = b,

where H =

 1 0 0
0 1 0
0 0 1

, c =

 0
0
0

, A =

[
1 2 −3
3 1 −4

]
and b =

(
5
5

)
.

We use elementary row operations (Gauss-Jordan) to put the system Ax = b

on reduced row echelon form:

[
1 2 −3 10
3 1 −4 10

]
−→

[
1 0 −1 2
0 1 −1 4

]
The general solution to Ax = b is then obtained by letting x3 = v (an arbitrary
number) whereafter x1 = 2 + v and x2 = 4 + v.
Thus, the complete set of solutions to Ax = b is given by

x =

 x1
x2
x3

 =

 2
4
0

+

 1
1
1

 v = x̄ + z v,

where x̄ is one solution to Ax = b, and z is a basis for the null-space of A.

Changing variables from x to v leads to a quadratic objective function which is
minimized by any solution v to the system (zTHz) v = −zT(Hx̄ + c),
provided that zTHz is positive semidefinite (≥ 0 in this one-variable case) and
at least one such solution v exists.

We get that zTHz = zTz = 3 > 0 and −zT(Hx̄ + c) = −zTx̄ = −6,

so the unique solution to the above system is v̂ = −6/3 = −2,

and the unique optimal solution to the original problem P is

x̂ = x̄ + z v̂ =

 2
4
0

+

−2
−2
−2

 =

 0
2
−2

, with f(x̂) = 4.

The Lagrange optimality conditions for the considered problem P are given

by the system
Hx−ATu = −c
Ax = b

The above optimal vector x̂ of course satisfies Ax̂ = b.

The equations Hx−ATu = −c are in our case equivalent to x = ATu,

which when x = x̂ becomes

 0
2
−2

 =

 1 3
2 1
−3 −4

(u1
u1

)
.

Solving the first two of these three equations gives the unique solution
û1 = 1.2, û2 = −0.4, which also satisfies the third equation.
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3.(b) and 3.(c)

When C 6= 0, the matrix H becomes H =

 1 0 0
0 1 −C
0 −C 1

,

while c =

 0
0
0

, x̄ =

 2
4
0

 and z =

 1
1
1

 are the same as above.

Then zTHz = 3−2C and −zT(Hx̄ + c) = −zTHx̄ = −(6−4C).

From this, the following conclusions can be drawn:

If C > 1.5 then zTHz is not positive semidefinite, and then the considered problem
has no optimal solution.

If C < 1.5 then zTHz is positive definite, and the system (zTHz) v = −zT(Hx̄ + c) ,
i.e. the equation (3−C) v = −(6−4C), has the unique solution v̂ = −2.
Then the original problem P has the unique optimal solution

x̂ = x̄ + z v̂ =

 2
4
0

+

−2
−2
−2

 =

 0
2
−2

, with f(x̂) = 4 + 4C.

If C = 1.5 then zTHz is positive semidefinite but not positive definite,
and the system (zTHz) v = −zT(Hx̄ + c) , i.e. the equation
(3−C) v = −(6−4C), becomes 0 v = 0, which is satisfied for all v ∈ IR.

Then the original problem P has an infinite number of optimal solutions,
namely all the vectors

x(v) = x̄ + z v =

 2
4
0

+

vv
v

 =

2+v
4+v
0+v

, where v ∈ IR,

with f(x(v)) = 1
2 ((2+v)2 + (4+v)2 + (0+v)2 − 3(4+v)(0+v)) = 10.

Thus, when C = 1.5, the set of optimal solutions to P is a line in IR3.

Answer on 3.(b): C < 1.5, x̂ = (0 , 2 ,−2)T, f(x̂) = 4 + 4C.

Answer on 3.(c): C = 1.5, x(v) = (2+v , 4+v , v)T for v ∈ IR, f(x(v)) = 10.
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4.(a) Some calculations give that

h1(x)+h2(x)+h3(x)+h4(x) = 4x21 + 4x22 − 4x2 + 4 = 1
2 xTHx + cTx + c0 ,

with H =

[
8 0
0 8

]
, c =

(
0
−4

)
and c0 = 4.

Since H is a diagonal matrix with strictly positive diagonal elements, H is positive definite.
This implies that a unique global minimum point to the above quadratic function is obtain
by solving Hx = −c, which has the solution x̃ = (0 , 0.5)T, with 1

2 x̃THx̃ + cTx̃ + c0 = 3.
Thus, we can conclude that h1(x)+h2(x)+h3(x)+h4(x) ≥ 3 > 0 for all x ∈IR2.
Now, if a point x̄ ∈ IR2 satisfies that hi(x̄) = 0, i = 1, 2, 3, 4, then
h1(x̄)+h2(x̄)+h3(x̄)+h4(x̄) = 0+0+0+0 = 0 , which is impossible according to above.
Thus, we can conclude that there is no solution to the system hi(x) = 0, i = 1, 2, 3, 4.

4.(b) Let h(x) = (h1(x), h2(x), h3(x), h4(x))T.

Then f(x) = 1
2 (h1(x)2+ h2(x)2+ h3(x)2+ h4(x)2) = 1

2 h(x)Th(x).

Since f has continuous derivatives, a necessary condition for a point x̂ ∈ IR2 to be a
local minimum point to f(x) (without any constraint) is that ∇f(x̂) = 0T.

By the chain rule, the gradient of f is given by

∇f(x̂) = h(x)T∇h(x), where ∇h(x) =


2(x1+2) 2(x2+1)
2(x1−2) 2(x2+1)
2(x1+1) 2(x2−2)
2(x1−1) 2(x2−2)

.

In particular, ∇f(0) = h(0)T∇h(0) = (1 , 1 , 1 , 1)


4 2
−4 2

2 −4
−2 −4

 = (0 ,−4) 6= 0T.

Thus, x = 0 is not even a local optimal solution to the considered least squares problem.

4.(c) Since f has continuous second derivatives, f is a convex function on IR2 if and only
if its Hessian matrix F(x) is positive semidefinite for all x ∈ IR2.

By the chain rule, the Hessian is given by F(x) = ∇h(x)T∇h(x) +
∑

i hi(x)Hi(x).

But Hi(x) = 2 I for all i. Therefore,
∑

i hi(x)Hi(x) = (2
∑

i hi(x)) I.

Let x be an arbitrary point in IR2. We shall check if F(x) is positive semidefinite.

For any vector w ∈ IR2 we get that

wTF(x)w = wT(∇h(x)T∇h(x) + (2
∑

i hi(x)) I )w =

wT∇h(x)T∇h(x)w + wT (2
∑

i hi(x)) I w = (∇h(x)w)T(∇h(x)w) + (2
∑

i hi(x)) wTw =

‖∇h(x)w ‖2 + (2
∑

i hi(x)) ‖w ‖2 ≥ 0, since
∑

i hi(x) > 0 according to 4.(a).

This shows that F(x) is positive semidefinite in the arbitrary point x ∈ IR2,
which means that F(x) is positive semidefinite for all x ∈ IR2,
which implies that f is a convex function on IR2.
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5. The Lagrange function for the problem can be written

L(x,y) = 1
2 (x1−q1)2 + 1

2 (x2−q2)2 + 1
2 (x3−q3)2 +

8∑
i=1

yigi(x),

where

g1(x) = x1 + x2 + x3 − 1,
g2(x) = x1 + x2 − x3 − 1,
g3(x) = x1 − x2 + x3 − 1,
g4(x) = x1 − x2 − x3 − 1,
g5(x) = −x1 + x2 + x3 − 1,
g6(x) = −x1 + x2 − x3 − 1,
g7(x) = −x1 − x2 + x3 − 1,
g8(x) = −x1 − x2 − x3 − 1.

For fixed y, this Lagrange function is a strictly convex quadratic function in x. Therefore, the
unique x which minimizes L(x,y), for fixed y, is obtained by setting the partial derivatives
of L with respect the primal variables xj equal to zero.

The global optimality conditions (GOC) then becomes:

x̂1 − q1 + ŷ1 + ŷ2 + ŷ3 + ŷ4 − ŷ5 − ŷ6 − ŷ7 − ŷ8 = 0,
x̂2 − q2 + ŷ1 + ŷ2 − ŷ3 − ŷ4 + ŷ5 + ŷ6 − ŷ7 − ŷ8 = 0, (GOC-1)
x̂3 − q3 + ŷ1 − ŷ2 + ŷ3 − ŷ4 + ŷ5 − ŷ6 + ŷ7 − ŷ8 = 0,

gi(x̂) ≤ 0, for i = 1, . . . , 8, (GOC-2)
ŷi ≥ 0, for i = 1, . . . , 8, (GOC-3)
ŷigi(x̂) = 0, for i = 1, . . . , 8. (GOC-4)

5.(a) Assume that q = (−0.5, 0.4,−0.4)T.

If x̂ = (−0.4, 0.3,−0.3)T then gi(x̂) = 0 for i = 6, while gi(x̂) < 0 for all i 6= 6.

Thus, (GOC-2) is satisfied. Further, (GOC-4) implies that ŷi = 0 for all i 6= 6.

Then (GOC-1) becomes:

−0.4 + 0.5− ŷ6 = 0,
0.3− 0.4 + ŷ6 = 0,
−0.3 + 0.4− ŷ6 = 0,

which is satisfied by ŷ6 = 0.1.

Since ŷ6 > 0, (GOC-3) is also satisfied.

Thus, x̂ = (−0.4, 0.3,−0.3)T, together with ŷ = (0, 0, 0, 0, 0, 0.1, 0, 0)T, satisfies all the global
optimality conditions. By a well-known result, this implies that x̂ = (−0.4, 0.3,−0.3)T is an
optimal solution to P when q = (−0.5, 0.4,−0.4)T.
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5.(b) Assume that q = (−0.8, 0.6,−0.1)T.

If x̂ = (−0.6, 0.4, 0)T then gi(x̂) = 0 for i=5 and i=6, while gi(x̂) < 0 for all other i.

Thus, (GOC-2) is satisfied. Further, (GOC-4) implies that ŷi = 0 for i = 1, 2, 3, 4, 7, 8.

Then (GOC-1) becomes:

−0.6 + 0.8− ŷ5 − ŷ6 = 0,
0.4− 0.6 + ŷ5 + ŷ6 = 0,
0.0 + 0.1 + ŷ5 − ŷ6 = 0,

which is satisfied by ŷ6 = 0.05 and ŷ6 = 0.15.

Since ŷ5 > 0 and ŷ6 > 0, (GOC-3) is also satisfied.

Thus, x̂ = (−0.6, 0.4, 0)T, together with ŷ = (0, 0, 0, 0, 0.05, 0.15, 0, 0)T, satisfies all the global
optimality conditions. By a well-known result, this implies that x̂ = (−0.6, 0.4, 0)T is an
optimal solution to P when q = (−0.8, 0.6,−0.1)T.
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