Solutions to exam in SF1811 Optimization, August 18, 2014

1.(a)

The considered LP problem is a minimum cost network flow problem with three nodes: 1,2 and 3 , and six arcs: $(1,2),(2,1),(1,3),(3,1),(2,3)$ and $(3,2)$.
The suggested solution $\hat{\mathbf{x}}=(15,0,10,0,0,0)^{\top}$ corresponds to a spanning tree with the arcs $(1,2)$ and $(1,3)$, i.e. a basic solution. It is a feasible basic solution since all the balance equations (in all nodes) are satisfied and all variables are non-negative.

The simplex variables y_{i} are obtained from the equations $y_{i}-y_{j}=c_{i j}$ for basic variables, together with $y_{3}=0$. This gives
$y_{3}=0$,
$y_{1}=y_{3}+c_{13}=0+2=2$,
$y_{2}=y_{1}-c_{12}=2-3=-1$.
Then the reduced costs for the non-basic variables are obtained from $r_{i j}=c_{i j}-y_{i}+y_{j}$:
$r_{21}=1-(-1)+2=4$, $r_{31}=1-0+2=3$, $r_{23}=1-(-1)+0=2$, $r_{32}=1-0+(-1)=0$.
Since all $r_{i j} \geq 0$, the suggested solution is optimal.
However, since $r_{32}=0$, the objective value will not change if we let x_{32} become a new basic variable. Let $x_{32}=t$ and increase t from 0 . Then the basic variables will change according to $x_{12}=15-t$ and $x_{13}=10+t$.
In particular, with $t=15$, we obtain a new optimal basic solution $\tilde{\mathbf{x}}=(0,0,25,0,0,15)^{\top}$.
Check: $\quad \mathbf{c}^{\top} \hat{\mathbf{x}}=3 \cdot 15+2 \cdot 10=65 . \quad \mathbf{c}^{\top} \tilde{\mathbf{x}}=2 \cdot 25+1 \cdot 15=65$.

1.(b)

We apply Gauss-Jordan's method on the given matrix $\mathbf{B}=\left[\begin{array}{ccc}1 & 2 & 4 \\ 8 & 16 & 32 \\ 64 & 128 & 256\end{array}\right]$.
Add -8 times the first row to the second row and -64 times the first row to the third row. Then the matrix $\left[\begin{array}{lll}1 & 2 & 4 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$ is obtained, and \mathbf{B} has been transformed to reduced row echelon form with only one leading one: $\mathbf{U}=\left[\begin{array}{lll}1 & 2 & 4\end{array}\right]$.
Note that $\mathcal{N}\left(\mathbf{B}^{\boldsymbol{\top}}\right)^{\perp}=\mathcal{R}(\mathbf{B})$, and that a basis to $\mathcal{R}(\mathbf{B})$ is obtained by chosing the columns in \mathbf{B} corresponding to the "leading ones" in \mathbf{U}, i.e. the first column in \mathbf{B}.
Thus, the single vector $\left(\begin{array}{c}1 \\ 8 \\ 64\end{array}\right)$ forms a basis to $\mathcal{R}(\mathbf{B})$, and thus also to $\mathcal{N}\left(\mathbf{B}^{\top}\right)^{\perp}$.
In order to find a basis for $\mathcal{N}(\mathbf{B})$, note that the system $\mathbf{B x}=\mathbf{0}$ is equivalent to the system $\mathbf{U x}=\mathbf{0}$, i.e. $x_{1}+2 x_{2}+4 x_{3}=0$, for which the general solution is obtained by letting $x_{2}=t$ and $x_{3}=s$, where t and s are arbitrary real numbers. Then $x_{1}=-2 t-4 s$, and the general solution to $\mathbf{B x}=\mathbf{0}$ can thus be written $\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)=t \cdot\left(\begin{array}{r}-2 \\ 1 \\ 0\end{array}\right)+s \cdot\left(\begin{array}{r}-4 \\ 0 \\ 1\end{array}\right)$.
It follows that the two vectors $\left(\begin{array}{r}-2 \\ 1 \\ 0\end{array}\right)$ and $\left(\begin{array}{r}-4 \\ 0 \\ 1\end{array}\right)$ form a basis for $\mathcal{N}(\mathbf{B})$.
By repeating the above steps on \mathbf{B}^{\top} instead of \mathbf{B} the following is obtained:
The single vector $\left(\begin{array}{l}1 \\ 2 \\ 4\end{array}\right)$ forms a basis to $\mathcal{R}\left(\mathbf{B}^{\boldsymbol{\top}}\right)$, and thus also to $\mathcal{N}(\mathbf{B})^{\perp}$.
The two vectors $\left(\begin{array}{c}-8 \\ 1 \\ 0\end{array}\right)$ and $\left(\begin{array}{c}-64 \\ 0 \\ 1\end{array}\right)$ form a basis for $\mathcal{N}\left(\mathbf{B}^{\top}\right)$.
Check of orthogonality:
$\left(\begin{array}{c}1 \\ 8 \\ 64\end{array}\right)^{\top}\left(\begin{array}{r}-8 \\ 1 \\ 0\end{array}\right)=0,\left(\begin{array}{c}1 \\ 8 \\ 64\end{array}\right)^{\top}\left(\begin{array}{c}-64 \\ 0 \\ 1\end{array}\right)=0,\left(\begin{array}{l}1 \\ 2 \\ 4\end{array}\right)^{\top}\left(\begin{array}{r}-2 \\ 1 \\ 0\end{array}\right)=0,\left(\begin{array}{l}1 \\ 2 \\ 4\end{array}\right)^{\top}\left(\begin{array}{r}-4 \\ 0 \\ 1\end{array}\right)=0$.
The vector $(1, b, 1)^{\top}$ belong to $\mathcal{N}(\mathbf{B})$ if and only if $\left[\begin{array}{lll}1 & 2 & 3\end{array}\right](1, b, 1)^{\top}=0$, i.e. if and only if $1+2 b+4=0$, i.e. if and only $b=-5 / 2$.
2.(a) Introduce the following new non-negative variables x_{j}^{\prime} :
$x_{1}^{\prime}=x_{1}, \quad x_{2}^{\prime}=x_{2}, \quad x_{3}^{\prime}-x_{4}^{\prime}=x_{3}$,
$x_{5}^{\prime}=$ slack variable for the constraint $x_{1}-x_{2}+x_{3} \geq 0$,
$x_{6}^{\prime}=$ slack variable for the constraint $x_{2}+x_{3} \geq 0$.
Further, introduce the variable vector $\mathbf{x}^{\prime}=\left(x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime}, x_{4}^{\prime}, x_{5}^{\prime}, x_{6}^{\prime}\right)^{\top}$.
Then the problem can be written as the following LP problem on standard form:

$$
\begin{aligned}
\operatorname{minimize} & \mathbf{c}^{\top} \mathbf{x}^{\prime} \\
\text { subject to } & \mathbf{A} \mathbf{x}^{\prime}=\mathbf{b}, \quad \mathbf{x}^{\prime} \geq \mathbf{0}
\end{aligned}
$$

where $\mathbf{A}=\left[\begin{array}{rrrrrr}1 & -1 & 1 & -1 & -1 & 0 \\ 0 & 1 & 1 & -1 & 0 & -1 \\ 1 & 1 & 0 & 0 & 0 & 0\end{array}\right], \quad \mathbf{b}=\left(\begin{array}{l}0 \\ 0 \\ 3\end{array}\right)$ and $\mathbf{c}=(0,0,1,-1,0,0)^{\top}$.
2.(b) and 2.(c)

The suggested solution $\hat{\mathbf{x}}=(2,1,-1)^{\top}$ corresponds to the solution $\hat{\mathbf{x}}^{\prime}=(2,1,0,1,0,0)^{\top}$ to the above problem on standard form. The optimality of this solution can be verified by showing that $\hat{\mathbf{x}}^{\prime}$ is a feasible basic solution with non-negative reduced costs.
Alternatively, the optimality of $\hat{\mathbf{x}}=(2,1,-1)^{\top}$ can be verified using the complementarity theorem. This is the approach used here, and then $2 .(\mathrm{c})$ is simultaneously solved.
When the primal problem is

$$
\begin{aligned}
\mathrm{P}: \text { minimize } & x_{3} \\
\text { subject to } & x_{1}-x_{2}+x_{3} \geq 0 \\
& x_{2}+x_{3} \geq 0 \\
& x_{1}+x_{2}=3 \\
& x_{1} \geq 0, x_{2} \geq 0, x_{3} \text { "free" }
\end{aligned}
$$

the corresponding dual problem is

$$
\begin{aligned}
& \text { D: maximize } 3 y_{3} \\
& \text { subject to } y_{1}+y_{3} \leq 0 \text {, } \\
& -y_{1}+y_{2}+y_{3} \leq 0, \\
& y_{1}+y_{2}=1 \text {, } \\
& y_{1} \geq 0, y_{2} \geq 0, y_{3} \text { "free". }
\end{aligned}
$$

The complementary theorem says that $\hat{\mathbf{x}}$ and $\hat{\mathbf{y}}$ are optimal solutions to P and D , respectively, if and only if
(1) $\hat{\mathbf{x}}$ and $\hat{\mathbf{y}}$ are feasible solutions to P and D ,
(2) $\hat{y}_{1}\left(\hat{x}_{1}-\hat{x}_{2}+\hat{x}_{3}\right)=0, \hat{y}_{2}\left(\hat{x}_{2}+\hat{x}_{3}\right)=0, \hat{x}_{1}\left(\hat{y}_{1}+\hat{y}_{3}\right)=0$ and $\hat{x}_{2}\left(-\hat{y}_{1}+\hat{y}_{2}+\hat{y}_{3}\right)=0$.

Since the suggested point $\hat{\mathbf{x}}=(2,1,-1)^{\top}$ is a feasible solution to P , it is an optimal solution to P if and only if there is a feasible solution $\hat{\mathbf{y}}$ to D such that $\hat{\mathbf{x}}$ and $\hat{\mathbf{y}}$ satisfy (2) above.

Note that $\hat{\mathbf{x}}$ satisfies $\hat{x}_{1}-\hat{x}_{2}+\hat{x}_{3}=0, \hat{x}_{2}+\hat{x}_{3}=0, \hat{x}_{1}+\hat{x}_{2}=3, \hat{x}_{1}>0$ and $\hat{x}_{2}>0$.
Thus, $\hat{\mathbf{y}}$ must satisfy $\hat{y}_{1}+\hat{y}_{3}=0,-\hat{y}_{1}+\hat{y}_{2}+\hat{y}_{3}=0, \hat{y}_{1}+\hat{y}_{2}=1, \hat{y}_{1} \geq 0$ and $\hat{y}_{2} \geq 0$.
The unique solution to the first three equations is $\hat{\mathbf{y}}=(1 / 3,2 / 3,-1 / 3)^{\top}$, and since this solution satisfies $\hat{y}_{1} \geq 0$ and $\hat{y}_{2} \geq 0$, it follows that $\hat{\mathbf{x}}$ and $\hat{\mathbf{y}}$ satisfy (1) and (2) above.
Thus, $\hat{\mathbf{x}}=(2,1,-1)^{\top}$ and $\hat{\mathbf{y}}=(1 / 3,2 / 3,-1 / 3)^{\top}$ are optimal solutions to P and D .
The optimal value of $\mathrm{P}=\hat{x}_{3}=-1$. The optimal value of $\mathrm{D}=3 \hat{y}_{3}=3 \cdot(-1 / 3)=-1$.

3.(a)

The objective function is $f(\mathbf{x})=\frac{1}{2} \mathbf{x}^{\top} \mathbf{H} \mathbf{x}+\mathbf{c}^{\top} \mathbf{x}$, with $\mathbf{H}=\left[\begin{array}{rrr}2 & -3 & -3 \\ -3 & 2 & -3 \\ -3 & -3 & 2\end{array}\right]$, $\mathbf{c}=\left(\begin{array}{l}10 \\ 20 \\ 30\end{array}\right)$.
LDL $^{\top}$-factorization of \mathbf{H} gives

$$
\mathbf{H}=\mathbf{L D L}^{\top}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-1.5 & 1 & 0 \\
-1.5 & 3 & 1
\end{array}\right]\left[\begin{array}{ccc}
2 & 0 & 0 \\
0 & -2.5 & 0 \\
0 & 0 & 20
\end{array}\right]\left[\begin{array}{rrr}
1 & -1.5 & -1.5 \\
0 & 1 & 3 \\
0 & 0 & 1
\end{array}\right]
$$

Since there is a negative diagonal element in \mathbf{D}, the matrix \mathbf{H} is not positive semidefinite, which in turn implies that there is no optimal solution to the problemen of minimizing $f(\mathbf{x})$ without constraints. (With e.g. $\mathbf{d}=(1,1,1)^{\top}, f(t \mathbf{d})=-12 t^{2}+60 t \rightarrow-\infty$ when $t \rightarrow \infty$.)
3.(b)

We now have a QP problem with equality constraints, i.e. a problem of the form minimize $\frac{1}{2} \mathbf{x}^{\top} \mathbf{H} \mathbf{x}+\mathbf{c}^{\top} \mathbf{x}$ subject to $\mathbf{A x}=\mathbf{b}$,
where $\mathbf{A}=\left[\begin{array}{lll}1 & 1 & 1\end{array}\right], \mathbf{b}=3, \mathbf{H}=\left[\begin{array}{rrr}2 & -3 & -3 \\ -3 & 2 & -3 \\ -3 & -3 & 2\end{array}\right]$ and $\mathbf{c}=\left(\begin{array}{c}10 \\ 20 \\ 30\end{array}\right)$.
The general solution to $\mathbf{A x}=\mathbf{b}$, i.e. to $x_{1}+x_{2}+x_{3}=3$, is given by
$\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)=\left(\begin{array}{l}3 \\ 0 \\ 0\end{array}\right)+\left(\begin{array}{r}-1 \\ 1 \\ 0\end{array}\right) \cdot v_{1}+\left(\begin{array}{r}-1 \\ 0 \\ 1\end{array}\right) \cdot v_{2}$, for arbitrary values on v_{1} and v_{2},
which means that $\overline{\mathbf{x}}=\left(\begin{array}{l}3 \\ 0 \\ 0\end{array}\right)$ is a feasible solution, and $\mathbf{Z}=\left[\begin{array}{rr}-1 & -1 \\ 1 & 0 \\ 0 & 1\end{array}\right]$ is a matrix
whos columns form a basis for the null space of \mathbf{A}.
After the variable change $\mathbf{x}=\overline{\mathbf{x}}+\mathbf{Z} \mathbf{v}$ we should solve the system $\left(\mathbf{Z}^{\top} \mathbf{H Z}\right) \mathbf{v}=-\mathbf{Z}^{\top}(\mathbf{H} \overline{\mathbf{x}}+\mathbf{c})$, provided that $\mathbf{Z}^{\top} \mathbf{H Z}$ is at least positive semidefinite.
We have $\mathbf{Z}^{\top} \mathbf{H Z}=\left[\begin{array}{cc}10 & 5 \\ 5 & 10\end{array}\right]$, which is positive definite (since $10>0,10>0,10 \cdot 10-5 \cdot 5>0$).
The system $\left(\mathbf{Z}^{\top} \mathbf{H Z}\right) \mathbf{v}=-\mathbf{Z}^{\top}(\mathbf{H} \overline{\mathbf{x}}+\mathbf{c})$ becomes
$\left[\begin{array}{cc}10 & 5 \\ 5 & 10\end{array}\right]\binom{v_{1}}{v_{2}}=\binom{5}{-5}$, with the unique solution $\hat{\mathbf{v}}=\binom{1}{-1}$, which implies that
$\hat{\mathbf{x}}=\overline{\mathbf{x}}+\mathbf{Z v}=\left(\begin{array}{r}3 \\ 1 \\ -1\end{array}\right)$ is the unique optimal solution to our problem.

4.(a)

The objective function is $f(\mathbf{x})=\left(x_{1}^{2}+x_{2}^{2}+1\right)^{1 / 2}-0.3 x_{1}-0.4 x_{2}$.
The gradient of f becomes $\nabla f(\mathbf{x})=\left(\frac{x_{1}}{\left(x_{1}^{2}+x_{2}^{2}+1\right)^{1 / 2}}-0.3, \frac{x_{2}}{\left(x_{1}^{2}+x_{2}^{2}+1\right)^{1 / 2}}-0.4\right)$.
The Hessian of f becomes $\mathbf{F}(\mathbf{x})=\frac{1}{\left(x_{1}^{2}+x_{2}^{2}+1\right)^{3 / 2}} \cdot\left[\begin{array}{cc}1+x_{2}^{2} & -x_{1} x_{2} \\ -x_{1} x_{2} & 1+x_{1}^{2}\end{array}\right]$.
The starting point is given by $\mathbf{x}^{(1)}=\binom{0}{0}$, and then
$f\left(\mathbf{x}^{(1)}\right)=1, \quad \nabla f\left(\mathbf{x}^{(1)}\right)=(-0.3,-0.4)$ and $\mathbf{F}\left(\mathbf{x}^{(1)}\right)=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$.
Since a diagonal matrix with strictly positive diagonal elements is positive definite, the Hessian $\mathbf{F}\left(\mathbf{x}^{(1)}\right)$ is positive definite, and then the first Newton search direction $\mathbf{d}^{(1)}$ is obtained by solving the system
$\mathbf{F}\left(\mathbf{x}^{(1)}\right) \mathbf{d}=-\nabla f\left(\mathbf{x}^{(1)}\right)^{\top}$, i.e. $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right] \mathbf{d}=\binom{0.3}{0.4}$, with the solution $\mathbf{d}^{(1)}=\binom{0.3}{0.4}$.
First try $t_{1}=1$, so that $\mathbf{x}^{(2)}=\mathbf{x}^{(1)}+t_{1} \mathbf{d}^{(1)}=\mathbf{x}^{(1)}+\mathbf{d}^{(1)}=\binom{0.3}{0.4}$.
Then $f\left(\mathbf{x}^{(2)}\right)=\sqrt{1.25}-0.09-0.16<1.2-0.25<1=f\left(\mathbf{x}^{(1)}\right)$, so $t_{1}=1$ is accepted, and the first iteration is completed.
4.(b)

The function f is convex on \mathbb{R}^{2} if and only if the Hessian

$$
\mathbf{F}(\mathbf{x})=\frac{1}{\left(x_{1}^{2}+x_{2}^{2}+1\right)^{3 / 2}} \cdot\left[\begin{array}{cc}
1+x_{2}^{2} & -x_{1} x_{2} \\
-x_{1} x_{2} & 1+x_{1}^{2}
\end{array}\right] \text { is positive semidefinite for all } \mathbf{x} \in \mathbb{R}^{2},
$$

which holds if and only if $\left[\begin{array}{cc}1+x_{2}^{2} & -x_{1} x_{2} \\ -x_{1} x_{2} & 1+x_{1}^{2}\end{array}\right]$ is positive semidefinite for all $\mathbf{x} \in \mathbb{R}^{2}$.
But $1+x_{2}^{2}>0,1+x_{1}^{2}>0$, and $\left(1+x_{2}^{2}\right)\left(1+x_{1}^{2}\right)-\left(-x_{1} x_{2}\right)\left(-x_{1} x_{2}\right)=1+x_{1}^{2}+x_{2}^{2}>0$
for all $\mathbf{x} \in \mathbb{R}^{2}$, which implies that $\mathbf{F}(\mathbf{x})$ is in fact positive definite for all $\mathbf{x} \in \mathbb{R}^{2}$, which in turn implies that f is strictly convex on the whole set \mathbb{R}^{2}.

4.(c)

We should solve $\nabla f(\mathbf{x})=(0,0)$, i.e. $\frac{x_{1}}{\left(x_{1}^{2}+x_{2}^{2}+1\right)^{1 / 2}}=0.3$ and $\frac{x_{2}}{\left(x_{1}^{2}+x_{2}^{2}+1\right)^{1 / 2}}=0.4$.
Some analytical calculations show that the only solution to this system is
$\hat{\mathbf{x}}=\left(\hat{x}_{1}, \hat{x}_{2}\right)^{\top}=\left(\frac{0.6}{\sqrt{3}}, \frac{0.8}{\sqrt{3}}\right)^{\top}$.
Since f is strictly convex on \mathbb{R}^{2}, $\hat{\mathbf{x}}$ is the unique globally optimal solution to the problem of minimizing $f(\mathbf{x})$ on \mathbb{R}^{2}.
5. With $f(\mathbf{x})=\sum_{j=1}^{n} \frac{c_{j}}{1-x_{j}}$ and $g(\mathbf{x})=\sum_{j=1}^{n} \frac{1}{1+x_{j}}-n$, the Lagrange function becomes $L(\mathbf{x}, y)=f(\mathbf{x})+y g(\mathbf{x})=\sum_{j=1}^{n} \frac{c_{j}}{1-x_{j}}+y\left(\sum_{j=1}^{n} \frac{1}{1+x_{j}}-n\right)=-y n+\sum_{j=1}^{n}\left(\frac{c_{j}}{1-x_{j}}+\frac{y}{1+x_{j}}\right)$.
The Lagrange relaxed problem PR_{y} is defined, for a given $y \geq 0$, as the problem of minimizing $L(\mathbf{x}, y)$ with respect to $\mathbf{x} \in X$.
But this problem separates into one problem for each variable x_{j}, namely

$$
\begin{equation*}
\operatorname{minimize} \ell_{j}\left(x_{j}\right)=\frac{c_{j}}{1-x_{j}}+\frac{y}{1+x_{j}} \text { subject to }-1<x_{j}<1 \tag{0.1}
\end{equation*}
$$

We have that $\ell_{j}^{\prime}\left(x_{j}\right)=\frac{c_{j}}{\left(1-x_{j}\right)^{2}}-\frac{y}{\left(1+x_{j}\right)^{2}}$ and $\ell_{j}^{\prime \prime}\left(x_{j}\right)=\frac{2 c_{j}}{\left(1-x_{j}\right)^{3}}+\frac{2 y}{\left(1+x_{j}\right)^{3}}>0$, which implies that $\ell_{j}\left(x_{j}\right)$ is strictly convex on the interval $(-1,1)$.

In accordance to the instructions, we will from now on only consider the case $y>0$.
Then there is a unique solution $\tilde{x}_{j}(y)$ to the equation $\ell_{j}^{\prime}\left(x_{j}\right)=0$, namely

$$
\begin{equation*}
\tilde{x}_{j}(y)=\frac{\sqrt{y}-\sqrt{c_{j}}}{\sqrt{y}+\sqrt{c_{j}}} \tag{0.2}
\end{equation*}
$$

which belongs to the interval $(-1,1)$ for all $y>0$.
We conclude that this $\tilde{x}_{j}(y)$ is the unique optimal solution to the subproblem (??).
The dual objective function is then given by
$\varphi(y)=L(\tilde{\mathbf{x}}(y), y)=-y n+\sum_{j=1}^{n}\left(\frac{c_{j}}{1-\tilde{x}_{j}(y)}+\frac{y}{1+\tilde{x}_{j}(y)}\right)=-y n+\frac{1}{2} \sum_{j=1}^{n}\left(\sqrt{y}+\sqrt{c_{j}}\right)^{2}$.
Then $\varphi^{\prime}(y)=-n+\frac{1}{2 \sqrt{y}} \sum_{j=1}^{n}\left(\sqrt{y}+\sqrt{c_{j}}\right)=-\frac{n}{2}+\frac{1}{2 \sqrt{y}} \sum_{j=1}^{n} \sqrt{c_{j}}$
and $\varphi^{\prime \prime}(y)=-\frac{1}{4 y \sqrt{y}} \sum_{j=1}^{n} \sqrt{c_{j}}<0$ for all $y>0$, so that φ is strictly concave when $y>0$.
Assume from now on that $n=3, c_{1}=1, c_{2}=4$ and $c_{1}=9$.
Then $\varphi^{\prime}(y)=-\frac{3}{2}+\frac{6}{2 \sqrt{y}}$ and the unique solution to $\varphi^{\prime}(y)=0$ is $\hat{y}=4$.
Since φ is strictly concave for $y>0$ it follows that $\varphi(4)>\varphi(y)$ for all $y>0$.
The corresponding primal solution is $\hat{\mathbf{x}}=\left(\tilde{x}_{1}(4), \tilde{x}_{2}(4), \tilde{x}_{3}(4)\right)^{\top}=(1 / 3,0,-1 / 5)^{\top}$, which satisfies $g(\hat{\mathbf{x}})=\frac{1}{1+1 / 3}+\frac{1}{1+0}+\frac{1}{1-1 / 5}-3=0$.
It follows that $\hat{\mathbf{x}}=(1 / 3,0,-1 / 5)^{\top}$ and $\hat{y}=4$ satisfy the global optimality conditions, and thus $\hat{\mathbf{x}}$ is a global optimal solution to the primal problem.

Since X is a convex set and $g(\mathbf{x})$ is a convex function on X, the feasible region for the primal problem is a convex set. Since, in addition, $f(\mathbf{x})$ is a strictly convex function on X, it follows that the obtained optimal solution $\hat{\mathbf{x}}$ must be the unique optimal solution to the primal problem P.

