Solutions to exam in SF1811 Optimization, 18 Jan 2014

1.(a) Let $\mathbf{x}=\left(x_{12}, x_{13}, x_{14}, x_{23}, x_{25}, x_{34}, x_{35}, x_{45}\right)^{\top}$,
where the variable $x_{i j}$ stands for the flow in the arc from node i to node j.
Let $\mathbf{c}=\left(c_{12}, c_{13}, c_{14}, c_{23}, c_{25}, c_{34}, c_{35}, c_{45}\right)^{\top}=(1, k, k, 1, k, 1, k, 1)^{\top}$. Then the total cost for the flow is given by $\mathbf{c}^{\top} \mathbf{x}$.
The flow balance conditions in the nodes can be written $\mathbf{A x}=\mathbf{b}$, where
$\mathbf{A}=\left[\begin{array}{rrrrrrrr}1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ -1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & -1 & 0 & 1 & 1 & 0 \\ 0 & 0 & -1 & 0 & 0 & -1 & 0 & 1 \\ 0 & 0 & 0 & 0 & -1 & 0 & -1 & -1\end{array}\right]$ and $\mathbf{b}=\left(\begin{array}{r}30 \\ 20 \\ 0 \\ -35 \\ -15\end{array}\right)$.
Finally, the given directions of the arcs imply the constraints $\mathbf{x} \geq \mathbf{0}$.
(It is recommended to remove the last row in \mathbf{A} and the corresponding last component in \mathbf{b} to get a system without any redundant equation.)
1.(b) If we let x_{12}, x_{23}, x_{34} and x_{45} be basic variables, the values of these basic variables can be calculated as follows:
$x_{12}=30$, because of flow balance in node 1 ,
$x_{23}=50$, because of flow balance in node 2 ,
$x_{34}=50$, because of flow balance in node 3,
$x_{45}=15$, because of flow balance in node 4 .
We see that the flow balance condition in node 5 also becomes fulfilled (since the problem is balanced).
1.(c) The reduced costs for the nonbasic variables can be calculted by $r_{i j}=c_{i j}-y_{i}+y_{j}$ for all nonbasic arcs, where the scalars (simplex multipliers) y_{i} are calculated by
$y_{i}-y_{j}=c_{i j}$ for all basic arcs, and $y_{5}=0$.
We get:
$y_{5}=0$, (by definition)
$y_{4}=c_{45}+y_{5}=1+0=1$,
$y_{3}=c_{34}+y_{4}=1+1=2$,
$y_{2}=c_{23}+y_{3}=1+2=3$,
$y_{1}=c_{12}+y_{2}=1+3=4$,
and then
$r_{13}=c_{13}-y_{1}+y_{3}=k-4+2=k-2$,
$r_{14}=c_{14}-y_{1}+y_{4}=k-4+1=k-3$,
$r_{25}=c_{25}-y_{2}+y_{5}=k-3+0=k-3$,
$r_{35}=c_{35}-y_{3}+y_{5}=k-2+0=k-2$.
We se that if $k \geq 3$ then all $r_{i j} \geq 0$ and the given basic solution is optimal.
If $k<3$ then $r_{14}<0$ and then we could let
$x_{14}=t, x_{12}=30-t, x_{23}=50-t, x_{34}=50-t$ and $x_{45}=15$.
For $t \in(0,30]$, this is a feasible solution with strictly decreasing cost when t increases. Thus, the basic solution from (b) is optimal if and only if $k \geq 3$.
2.(a) The considered LP problem is on the form

$$
\operatorname{minimize} \mathbf{c}^{\top} \mathbf{x} \text { subject to } \mathbf{A x}=\mathbf{b} \text { and } \mathbf{x} \geq \mathbf{0}
$$

where $\mathbf{A}=\left[\begin{array}{rrrr}1 & -1 & 1 & -1 \\ 1 & 1 & -1 & -1\end{array}\right], \quad \mathbf{b}=\binom{2}{4}$ and $\mathbf{c}^{\boldsymbol{\top}}=(1,3,1,1)$.
In the suggested solution, x_{1} and x_{2} are basic variables, i.e. $\beta=(1,2)$ and $\nu=(3,4)$.
The corresponding basic matrix is $\mathbf{A}_{\beta}=\left[\begin{array}{rr}1 & -1 \\ 1 & 1\end{array}\right]$, while $\mathbf{A}_{\nu}=\left[\begin{array}{rr}1 & -1 \\ -1 & -1\end{array}\right]$.
The current values of the basic variables are $\mathbf{x}_{\beta}=\overline{\mathbf{b}}$, where $\overline{\mathbf{b}}$ is obtained from
$\mathbf{A}_{\beta} \overline{\mathbf{b}}=\mathbf{b}$, i.e. $\left[\begin{array}{rr}1 & -1 \\ 1 & 1\end{array}\right]\binom{\bar{b}_{1}}{\bar{b}_{2}}=\binom{2}{4}$, with the solution $\overline{\mathbf{b}}=\binom{\bar{b}_{1}}{\bar{b}_{2}}=\binom{3}{1}$,
and thus $x_{1}=3$ and $x_{2}=1$, which agrees with the suggested solution.
The vector \mathbf{y} with simplex multipliers is obtained from the system $\mathbf{A}_{\beta}^{\top} \mathbf{y}=\mathbf{c}_{\beta}$, i.e.

$$
\left[\begin{array}{rr}
1 & 1 \\
-1 & 1
\end{array}\right]\binom{y_{1}}{y_{2}}=\binom{1}{3} \text {, with the solution } \mathbf{y}=\binom{y_{1}}{y_{2}}=\binom{-1}{2} .
$$

The reduced costs for the non-basic variables are given by $\mathbf{r}_{\nu}^{\top}=\mathbf{c}_{\nu}^{\top}-\mathbf{y}^{\top} \mathbf{A}_{\nu}=(1,1)-(-1,2)\left[\begin{array}{rr}1 & -1 \\ -1 & -1\end{array}\right]=(4,2)$.
Since these reduced costs are non-negative, the suggested solution is optimal.
Thus, $\mathbf{x}=(3,1,0,0)^{\top}$ is an optimal solution. The optimal value $=\mathbf{c}^{\top} \mathbf{x}=6$.
2.(b) Since the primal problem is on the form

$$
\text { minimize } \mathbf{c}^{\top} \mathbf{x} \text { subject to } \mathbf{A x}=\mathbf{b} \text { and } \mathbf{x} \geq \mathbf{0}
$$

the corresponding dual problem D1 is on the form

$$
\text { maximize } \mathbf{b}^{\top} \mathbf{y} \text { subject to } \mathbf{A}^{\top} \mathbf{y} \leq \mathbf{c},
$$

which, written out in details, becomes

$$
\begin{array}{cc}
\operatorname{maximize} & 2 y_{1}+4 y_{2} \\
\text { subject to } & y_{1}+y_{2}
\end{array} \leq 1,,
$$

A careful figure shows that the feasible region is a rectangle with corners $(1,0),(-1,2),(-2,1)$ and $(0,-1)$. Level sets to the objective function $2 y_{1}+4 y_{2}$ are parallel lines orthogonal to the vector (2,4), with increasing values when moving "north-north-east".

The level set which corresponds to the maximal value of the objective function is given, from the figure, by the line $2 y_{1}+4 y_{2}=6$, which goes through the corner $\left(y_{1}, y_{2}\right)=(-1,2)$. Thus, this is the optimal solution to the dual problem D1. The optimal value $=\mathbf{b}^{\top} \mathbf{y}=6$.
2.(c) With surplus variables x_{5} and x_{6}, an LP problem on standard form is obtained:

$$
\text { minimize } \mathbf{c}^{\top} \mathbf{x} \text { subject to } \mathbf{A x}=\mathbf{b} \text { and } \mathbf{x} \geq \mathbf{0}
$$

where now $\mathbf{A}=\left[\begin{array}{rrrrrr}1 & -1 & 1 & -1 & -1 & 0 \\ 1 & 1 & -1 & -1 & 0 & -1\end{array}\right], \quad \mathbf{b}=\binom{2}{4}$ and $\mathbf{c}^{\top}=(1,3,1,1,0,0)$.
We start from the solution from (a), with $\beta=(1,2)$ and $\nu=(3,4,5,6)$,
which is a feasible basic solution also to this new problem.
The matrix $\mathbf{A}_{\beta}=\left[\begin{array}{rr}1 & -1 \\ 1 & 1\end{array}\right]$ and the vectors $\overline{\mathbf{b}}=\binom{3}{1}$ and $\mathbf{y}=\binom{-1}{2}$ are the same as in (a), while the matrix $\mathbf{A}_{\nu}=\left[\begin{array}{rrrr}1 & -1 & -1 & 0 \\ -1 & -1 & 0 & -1\end{array}\right]$.
The reduced costs for the non-basic varibles are now give by
$\mathbf{r}_{\nu}^{\top}=\mathbf{c}_{\nu}^{\top}-\mathbf{y}^{\top} \mathbf{A}_{\nu}=(1,1,0,0)-(-1,2)\left[\begin{array}{rrrr}1 & -1 & -1 & 0 \\ -1 & -1 & 0 & -1\end{array}\right]=(4,2,-1,2)$.
Since $r_{\nu_{3}}=r_{5}=-1$ is smallest, and <0, we let x_{5} become a new basic variable.
The vector $\overline{\mathbf{a}}_{5}$ is obtained from the system $\mathbf{A}_{\beta} \overline{\mathbf{a}}_{5}=\mathbf{a}_{5}$, which becomes
$\left[\begin{array}{rr}1 & -1 \\ 1 & 1\end{array}\right]\binom{\bar{a}_{15}}{\bar{a}_{25}}=\binom{-1}{0}$, with the solution $\overline{\mathbf{a}}_{1}=\binom{\bar{a}_{15}}{\bar{a}_{25}}=\binom{-0.5}{0.5}$.
The value of the new basic variable x_{5} is given by

$$
t^{\max }=\min _{i}\left\{\left.\frac{\bar{b}_{i}}{\bar{a}_{i 5}} \right\rvert\, \bar{a}_{i 5}>0\right\}=\frac{1}{0.5}=\frac{\bar{b}_{2}}{\bar{a}_{25}} .
$$

Here, the minimizing index is $i=2$, so $x_{\beta_{2}}=x_{2}$ should leave the basis.
Now $\beta=(1,5)$ and $\nu=(2,3,4,6)$.
The corresponding basic matrix is $\mathbf{A}_{\beta}=\left[\begin{array}{rr}1 & -1 \\ 1 & 0\end{array}\right]$, while $\mathbf{A}_{\nu}=\left[\begin{array}{rrrr}-1 & 1 & -1 & 0 \\ 1 & -1 & -1 & -1\end{array}\right]$.
The current values of the basic variables are $\mathbf{x}_{\beta}=\overline{\mathbf{b}}$, where $\overline{\mathbf{b}}$ is obtained from
$\mathbf{A}_{\beta} \overline{\mathbf{b}}=\mathbf{b}$, i.e. $\left[\begin{array}{rr}1 & -1 \\ 1 & 0\end{array}\right]\binom{\bar{b}_{1}}{\bar{b}_{2}}=\binom{2}{4}$, with the solution $\overline{\mathbf{b}}=\binom{\bar{b}_{1}}{\bar{b}_{2}}=\binom{4}{2}$.
The vector \mathbf{y} with simplex multipliers is obtained from the system
$\mathbf{A}_{\beta}^{\top} \mathbf{y}=\mathbf{c}_{\beta}$, i.e. $\left[\begin{array}{rr}1 & 1 \\ -1 & 0\end{array}\right]\binom{y_{1}}{y_{2}}=\binom{1}{0}$, with the solution $\mathbf{y}=\binom{y_{1}}{y_{2}}=\binom{0}{1}$.
The reduced costs for the non-basic variables are given by
$\mathbf{r}_{\nu}^{\top}=\mathbf{c}_{\nu}^{\top}-\mathbf{y}^{\top} \mathbf{A}_{\nu}=(3,1,1,0)-(0,1)\left[\begin{array}{rrrr}-1 & 1 & -1 & 0 \\ 1 & -1 & -1 & -1\end{array}\right]=(2,2,2,1)$.
Since these reduced costs are non-negative, the current basic solution is optimal.
Thus, $\mathbf{x}=(4,0,0,0,2,0)^{\boldsymbol{\top}}$ is an optimal solution. The optimal value $=\mathbf{c}^{\boldsymbol{\top}} \mathbf{x}=4$.
2.(d) With slack variables x_{5} and x_{6}, an LP problem on standard form is obtained:

$$
\operatorname{minimize} \mathbf{c}^{\top} \mathbf{x} \text { subject to } \mathbf{A x}=\mathbf{b} \text { and } \mathbf{x} \geq \mathbf{0}
$$

where now $\mathbf{A}=\left[\begin{array}{rrrrrr}1 & -1 & 1 & -1 & 1 & 0 \\ 1 & 1 & -1 & -1 & 0 & 1\end{array}\right], \quad \mathbf{b}=\binom{2}{4}$ and $\mathbf{c}^{\top}=(1,3,1,1,0,0)$.
As recommended, we now start with $\beta=(5,6)$ and $\nu=(1,2,3,4)$.
The corresponding basic matrix is $\mathbf{A}_{\beta}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$, while $\mathbf{A}_{\nu}=\left[\begin{array}{rrrr}1 & -1 & 1 & -1 \\ 1 & 1 & -1 & -1\end{array}\right]$.
The current values of the basic variables are $\mathbf{x}_{\beta}=\overline{\mathbf{b}}$, where $\overline{\mathbf{b}}$ is obtained from
$\mathbf{A}_{\beta} \overline{\mathbf{b}}=\mathbf{b}$, i.e. $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]\binom{\bar{b}_{1}}{\bar{b}_{2}}=\binom{2}{4}$, with the solution $\overline{\mathbf{b}}=\binom{\bar{b}_{1}}{\bar{b}_{2}}=\binom{2}{4}$.
The vector \mathbf{y} with simplex multipliers is obtained from the system $\mathbf{A}_{\beta}^{\top} \mathbf{y}=\mathbf{c}_{\beta}$, i.e.
$\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]\binom{y_{1}}{y_{2}}=\binom{0}{0}$, with the solution $\mathbf{y}=\binom{y_{1}}{y_{2}}=\binom{0}{0}$.
The reduced costs for the non-basic variables are given by $\mathbf{r}_{\nu}^{\top}=\mathbf{c}_{\nu}^{\top}-\mathbf{y}^{\top} \mathbf{A}_{\nu}=(1,3,1,1)-(0,0)\left[\begin{array}{rrrr}1 & -1 & 1 & -1 \\ 1 & 1 & -1 & -1\end{array}\right]=(1,3,1,1)$.
Since these reduced costs are non-negative, the current basic solution is optimal.
Thus, $\mathbf{x}=(0,0,0,0,2,4)^{\top}$ is an optimal solution. The optimal value $=\mathbf{c}^{\top} \mathbf{x}=0$.
3.(a) The considered problem can be written

$$
\operatorname{minimize} \frac{1}{2} \mathbf{x}^{\top} \mathbf{H} \mathbf{x}+\mathbf{c}^{\top} \mathbf{x} \text { subject to } \mathbf{A} \mathbf{x}=\mathbf{b},
$$

where $\mathbf{H}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right], \mathbf{c}=\left(\begin{array}{l}-1 \\ -1 \\ -1\end{array}\right), \quad \mathbf{A}=\left[\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 1\end{array}\right]$ and $\mathbf{b}=\binom{1}{3}$.
The matrix $\mathbf{H}=\mathbf{I}$ is positive definite, so we have a convex QP problem.
We use elementary row operations (Gauss-Jordan) to put the system $\mathbf{A x}=\mathbf{b}$
on reduced row echelon form: $\left[\begin{array}{lll|l}1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 3\end{array}\right] \rightarrow\left[\begin{array}{rrr|r}1 & 0 & -1 & -2 \\ 0 & 1 & 1 & 3\end{array}\right]$
The general solution to $\mathbf{A} \mathbf{x}=\mathbf{b}$ is then obtained by letting $x_{3}=v$ (an arbitrary number) whereafter $x_{1}=-2+v$ and $x_{2}=3-v$.
Thus, the complete set of solutions to $\mathbf{A x}=\mathbf{b}$ is given by
$\mathbf{x}=\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)=\left(\begin{array}{r}-2 \\ 3 \\ 0\end{array}\right)+\left(\begin{array}{r}1 \\ -1 \\ 1\end{array}\right) v=\overline{\mathbf{x}}+\mathbf{z} v$,
where $\overline{\mathbf{x}}$ is one solution to $\mathbf{A x}=\mathbf{b}$, and \mathbf{z} is a basis for the null-space of \mathbf{A}.
Changing variables from \mathbf{x} to v leads to a quadratic objective function which is uniquely minimized by the solution \hat{v} to the system ($\left.\mathbf{z}^{\top} \mathbf{H z}\right) v=-\mathbf{z}^{\top}(\mathbf{H} \overline{\mathbf{x}}+\mathbf{c})$, provided that $\mathbf{z}^{\top} \mathbf{H z}$ is positive definite (>0 in this one-variable case).

We get that $\mathbf{z}^{\top} \mathbf{H z}=\mathbf{z}^{\top} \mathbf{z}=3>0$ and $-\mathbf{z}^{\top}(\mathbf{H} \overline{\mathbf{x}}+\mathbf{c})=-\mathbf{z}^{\top}(\overline{\mathbf{x}}+\mathbf{c})=6$, so the unique solution to the system above is $\hat{v}=6 / 3=2$, and the unique global optimal solution to the original problem is $\hat{\mathbf{x}}=\overline{\mathbf{x}}+\mathbf{z} \hat{v}=\left(\begin{array}{r}-2 \\ 3 \\ 0\end{array}\right)+\left(\begin{array}{r}2 \\ -2 \\ 2\end{array}\right)=\left(\begin{array}{l}0 \\ 1 \\ 2\end{array}\right)$.
3.(b) The Lagrange optimality conditions for the considered convex

QP problem are given by the system $\begin{array}{lll}\mathbf{H x}-\mathbf{A}^{\top} \mathbf{u} & = & \mathbf{c} \\ \mathbf{A x} & = & \mathbf{b}\end{array}$
The equations $\mathbf{H x}-\mathbf{A}^{\top} \mathbf{u}=-\mathbf{c}$ are in our case equivalent to $\mathbf{x}=\mathbf{A}^{\top} \mathbf{u}-\mathbf{c}$. If this is combined with the remaining equations $\mathbf{A x}=\mathbf{b}$, we get that
$\mathbf{A A}^{\top} \mathbf{u}=\mathbf{A c}+\mathbf{b}$, which in our case becomes

$$
\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right]\binom{u_{1}}{u_{2}}=\binom{-1}{1} \text {, with the unique solution } \hat{\mathbf{u}}=\binom{-1}{1} .
$$

The corresponding unique $\hat{\mathbf{x}}$ (which together with $\hat{\mathbf{u}}$ satisfies the Lagrange conditions)
is then given by $\hat{\mathbf{x}}=\mathbf{A}^{\top} \hat{\mathbf{u}}-\mathbf{c}=\left[\begin{array}{ll}1 & 0 \\ 1 & 1 \\ 0 & 1\end{array}\right]\binom{-1}{1}-\left(\begin{array}{l}-1 \\ -1 \\ -1\end{array}\right)=\left(\begin{array}{l}0 \\ 1 \\ 2\end{array}\right)$.
Since \mathbf{H} is positive definite, the Lagrange conditions are both necessary and sufficient for a global optimum, and thus $\hat{\mathbf{x}}$ is the unique global optimal solution to the considered QP problem. As expected, the obtained results in (a) and (b) agree.

3.(c)

Let $f(\mathbf{x})=\frac{1}{2}\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}\right)-x_{1}-x_{2}-x_{3}, \quad g_{1}(\mathbf{x})=x_{1}+x_{2}-1, \quad g_{2}(\mathbf{x})=3-x_{2}-x_{3}$.
Then the considered problem becomes: minimize $f(\mathbf{x})$ subject to $g_{i}(\mathbf{x}) \leq 0$ for $i=1,2$.
The KKT conditions for this problem become
(KKT-1) $\frac{\partial f}{\partial x_{j}}+y_{1} \frac{\partial g_{1}}{\partial x_{j}}+y_{2} \frac{\partial g_{2}}{\partial x_{j}}=0$ for $j=1,2,3$, i.e.
$x_{1}-1+y_{1}=0$,
$x_{2}-1+y_{1}-y_{2}=0$,
$x_{3}-1-y_{2}=0$,
(KKT-2) $g_{i}(\mathbf{x}) \leq 0$ for $i=1,2$, i.e.
$x_{1}+x_{2}-1 \leq 0$,
$3-x_{2}-x_{3} \leq 0$,
(KKT-3) $y_{1} \geq 0$ och $y_{2} \geq 0$.
(KKT-4) $y_{i} g_{i}(\mathbf{x})=0$ for $i=1,2$, i.e.
$y_{1}\left(x_{1}+x_{2}-1\right)=0$, $y_{2}\left(3-x_{2}-x_{3}\right)=0$.
Let $\hat{\mathbf{x}}=(0,1,2)^{\top}$, as in (a) and (b). Then $g_{1}(\hat{\mathbf{x}})=0$ and $g_{2}(\hat{\mathbf{x}})=0$ so that (KKT-2) and (KKT-4) are satisfied by $\hat{\mathbf{x}}$, for all y_{1} and y_{2}.
Further, the conditions (KKT-1) are satisfied by $\hat{\mathbf{x}}=(0,1,2)^{\top}$ and $\hat{\mathbf{y}}=\left(\hat{y}_{1}, \hat{y}_{2}\right)^{\top}$ if and only if $\hat{\mathbf{y}}=(1,1)^{\top}$. But $\hat{\mathbf{y}}=(1,1)^{\top}$ satisfies also (KKT-3).
Thus, $\hat{\mathbf{x}}=(0,1,2)^{\top}$ is a KKT point. Since f, g_{1} and g_{2} are convex functions, every KKT point is a global optimal solution, and thus $\hat{\mathbf{x}}$ is a global optimal solution to the considered inequality-constrained QP problem.

3.(d)

Now let $f(\mathbf{x})=\frac{1}{2}\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}\right)-x_{1}-x_{2}-x_{3}, \quad g_{1}(\mathbf{x})=1-x_{1}-x_{2}, \quad g_{2}(\mathbf{x})=x_{2}+x_{3}-3$.
The KKT conditions for this problem become
$(\mathrm{KKT}-1) \frac{\partial f}{\partial x_{j}}+y_{1} \frac{\partial g_{1}}{\partial x_{j}}+y_{2} \frac{\partial g_{2}}{\partial x_{j}}=0$ for $j=1,2,3$, i.e.
$x_{1}-1-y_{1}=0$,
$x_{2}-1-y_{1}+y_{2}=0$,
$x_{3}-1+y_{2}=0$,
$(\mathrm{KKT}-2) \quad g_{i}(\mathbf{x}) \leq 0$ for $i=1,2$, i.e.
$1-x_{1}-x_{2} \leq 0$,
$x_{2}+x_{3}-3 \leq 0$,
(KKT-3) $\quad y_{1} \geq 0$ och $y_{2} \geq 0$.
$(\mathrm{KKT}-4) y_{i} g_{i}(\mathbf{x})=0$ for $i=1,2$, i.e.
$y_{1}\left(1-x_{1}-x_{2}\right)=0$, $y_{2}\left(x_{2}+x_{3}-3\right)=0$.

The result from (c) indicate that the objective function would be decreased (compared to the solution in (c)) if $x_{1}+x_{2}>1$ and $x_{2}+x_{3}<3$, i.e. if the constraints in (d) are not satisfied with equality. So let us try with $y_{1}=y_{2}=0$ in the KKT conditions above.
Then (KKT-3) and (KKT-4) are satisfied for all \mathbf{x}.
Further, the conditions (KKT-1) are satisfied if and only if $\mathbf{x}=(1,1,1)^{\top}$.
But this \mathbf{x} satisfies also (KKT-2)!
Thus, $\mathbf{x}=(1,1,1)^{\top}$ is a KKT point. Again, since f, g_{1} and g_{2} are convex functions, every KKT point is a global optimal solution, and thus $\mathbf{x}=(1,1,1)^{\top}$ is a global optimal solution.

Interpretation (and a shorter way to solve the problem): If the constraints are completely neglected, so that the problem becomes simply to minimize $\frac{1}{2}\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}\right)-x_{1}-x_{2}-x_{3}$ without any constraints, then the unique optimal solution would clearly be $\mathbf{x}=(1,1,1)^{\top}$. But since this solution happens to satisfy the constraints in (d), it must be the unique optimal solution also to the problem in (d). (Note that $\mathbf{x}=(1,1,1)^{\top}$ is not feasible, and thus not optimal, to the problems in (a)-(c).)

4.

Change notation on the constant from c to x.
Then we should minimize $f(x)=\frac{1}{2} \mathbf{h}(x)^{\top} \mathbf{h}(x)=\frac{1}{2}\left(h_{1}(x)^{2}+h_{2}(x)^{2}\right)$,
where $\mathbf{h}(x)=\binom{h_{1}(x)}{h_{2}(x)}$, with
$h_{1}(x)=\frac{1}{1+x t_{1}}-w_{1}=\frac{1}{1+x}-0.46$,
$h_{2}(x)=\frac{1}{1+x t_{2}}-w_{2}=\frac{1}{1+3 x}-0.22$.
This is a nonlinear least-squares problem with $n=1$ (one single variable x) and $m=2$ (two terms in the quadratic sum).

Differentiation gives that
$\nabla \mathbf{h}(x)=\left[\begin{array}{l}h_{1}^{\prime}(x) \\ h_{2}^{\prime}(x)\end{array}\right]$, where $h_{1}^{\prime}(x)=\frac{-1}{(1+x)^{2}} \quad$ and $\quad h_{2}^{\prime}(x)=\frac{-3}{(1+3 x)^{2}}$.
We should start in $x^{(1)}=1$. Then
$\mathbf{h}\left(x^{(1)}\right)=\binom{0.04}{0.03}$ and $\nabla \mathbf{h}\left(x^{(1)}\right)=\left[\begin{array}{c}-1 / 4 \\ -3 / 16\end{array}\right]=\left[\begin{array}{c}-4 / 16 \\ -3 / 16\end{array}\right]$.
In Gauss-Newtons method, $\nabla \mathbf{h}\left(x^{(1)}\right)^{\top} \nabla \mathbf{h}\left(x^{(1)}\right) \mathbf{d}=-\nabla \mathbf{h}\left(x^{(1)}\right)^{\top} \mathbf{h}\left(x^{(1)}\right)$ should be solved.
In our case, $\nabla \mathbf{h}\left(x^{(1)}\right)^{\top} \nabla \mathbf{h}\left(x^{(1)}\right)=(-4 / 16)^{2}+(-3 / 16)^{2}=25 / 256$ and $-\nabla \mathbf{h}\left(x^{(1)}\right)^{\top} \mathbf{h}\left(x^{(1)}\right)=(4 / 16)(4 / 100)+(3 / 16)(3 / 100)=25 / 1600$,
so we get the equation $(25 / 256) d=25 / 1600$, with the solution $d^{(1)}=256 / 1600=0.16$.
We try with $t_{1}=1$, so that $x^{(2)}=x^{(1)}+t_{1} d^{(1)}=1+0.16=1.16$. Then

$$
\begin{aligned}
& h_{1}\left(x^{(2)}\right)=\frac{1}{2.16}-0.46=\frac{1-0.46 \cdot 2.16}{2.16}=\frac{0.0064}{2.16}<0.04=h_{1}\left(x^{(1)}\right) \text { and } \\
& h_{2}\left(x^{(2)}\right)=\frac{1}{4.48}-0.22=\frac{1-0.22 \cdot 4.48}{4.48}=\frac{0.0144}{4.48}<0.03=h_{2}\left(x^{(1)}\right)
\end{aligned}
$$

Since $\left|h_{1}\left(x^{(2)}\right)\right|<\left|h_{1}\left(x^{(1)}\right)\right|$ and $\left|h_{2}\left(x^{(2)}\right)\right|<\left|h_{2}\left(x^{(1)}\right)\right|$ it follows that $f\left(x^{(2)}\right)<f\left(x^{(1)}\right)$, which means that we should accept $t_{1}=1$.

Now we have made an iteration with Gauss-Newtons method and obtained the new suggested value $c=1.16$, which is better than the starting value $c=1$ since the quadratic sum $\frac{1}{2} \sum_{i=1}^{m}\left(\frac{1}{1+c t_{i}}-w_{i}\right)^{2}$ has decreased.
5.(a) The Lagrange function for the considered problem is given by
$L(\mathbf{x}, y)=(\mathbf{x}-\mathbf{q})^{\top}(\mathbf{x}-\mathbf{q})+y \cdot\left(\mathbf{x}^{\top} \mathbf{D} \mathbf{x}-1\right)$, with $\mathbf{x} \in \mathbb{R}^{n}$ and $y \in \mathbb{R}$.
The Lagrange relaxed problem PR_{y} is defined, for a given $y \geq 0$, as the problem of minimizing $L(\mathbf{x}, y)$ with respect to $\mathbf{x} \in \mathbb{R}^{n}$.
Since $L(\mathbf{x}, y)=\mathbf{x}^{\top}(\mathbf{I}+y \mathbf{D}) \mathbf{x}-2 \mathbf{q}^{\top} \mathbf{x}+\mathbf{q}^{\top} \mathbf{q}-y$, the optimal solution to PR_{y} is given by
$\tilde{\mathbf{x}}(y)=(\mathbf{I}+y \mathbf{D})^{-1} \mathbf{q}$, i.e. $\tilde{x}_{j}(y)=\frac{q_{j}}{1+y d_{j}}$, for $j=1, \ldots, n$.
Then the dual objective function becomes
$\varphi(y)=L(\tilde{\mathbf{x}}(y), y)=-\mathbf{q}^{\top}(\mathbf{I}+y \mathbf{D})^{-1} \mathbf{q}+\mathbf{q}^{\top} \mathbf{q}-y=\mathbf{q}^{\top} \mathbf{q}-y-\sum_{j=1}^{n} \frac{q_{j}^{2}}{1+y d_{j}}$.
The dual problem consists of maximizing $\varphi(y)$ with respect to $y \geq 0$.
5.(b) Some calculus give that
$\varphi^{\prime}(y)=-1+\sum_{j=1}^{n} \frac{q_{j}^{2} d_{j}}{\left(1+y d_{j}\right)^{2}}$ and $\varphi^{\prime \prime}(y)=-\sum_{j=1}^{n} \frac{2 q_{j}^{2} d_{j}^{2}}{\left(1+y d_{j}\right)^{3}}$.
In particular, $\varphi^{\prime}(0)=-1+\sum_{j=1}^{n} q_{j}^{2} d_{j}=\mathbf{q}^{\top} \mathbf{D} \mathbf{q}-1>0$.
Further, $\varphi^{\prime \prime}(y)<0$ for all $y \geq 0$, which implies that $\varphi^{\prime}(y)$ is continuous and strictly decreasing for $y \geq 0$, and also that $\varphi(y)$ is strictly concave for $y \geq 0$.
Finally, $\varphi^{\prime}\left(y_{1}\right)<-1+\sum_{j=1}^{n} \frac{q_{j}^{2} d_{j}}{\left(y_{1} d_{j}\right)^{2}}=-1+\frac{1}{y_{1}^{2}} \sum_{j=1}^{n} \frac{q_{j}^{2}}{d_{j}}=0$ if $y_{1}^{2}=\sum_{j=1}^{n} \frac{q_{j}^{2}}{d_{j}}>0$.
5.(c) The results in (b) imply that there is a unique $\hat{y}>0$ such that $\varphi^{\prime}(\hat{y})=0$. In addition, since $\varphi(y)$ is strictly concave for $y \geq 0$, this unique $\hat{y}>0$ which satisfies $\varphi^{\prime}(\hat{y})=0$ is the unique optimal solution to the dual problem.
Now let $\hat{\mathbf{x}}=\tilde{\mathbf{x}}(\hat{y})$. Then $\hat{x}_{j}=\tilde{x}_{j}(\hat{y})=\frac{q_{j}}{1+\hat{y} d_{j}}$, so that $\varphi^{\prime}(\hat{y})=0$ implies that $0=\sum_{j=1}^{n} \frac{q_{j}^{2} d_{j}}{\left(1+\hat{y} d_{j}\right)^{2}}-1=\sum_{j=1}^{n} d_{j} \hat{x}_{j}^{2}-1=\hat{\mathbf{x}}^{\top} \mathbf{D} \hat{\mathbf{x}}-1$.
Then $\hat{\mathbf{x}}$, together with \hat{y}, satisfies the global optimality conditions (GOC):
(i) $L(\hat{\mathbf{x}}, \hat{y}) \leq L(\mathbf{x}, \hat{y})$ for all $\mathbf{x} \in \mathbb{R}^{n}$. (Since $\hat{\mathbf{x}}=\tilde{\mathbf{x}}(\hat{y})$.)
(ii) $\hat{\mathbf{x}}^{\top} \mathbf{D} \hat{\mathbf{x}}-1 \leq 0 . \quad\left(\right.$ Since $\hat{\mathbf{x}}^{\top} \mathbf{D} \hat{\mathbf{x}}=1$.)
(iii) $\hat{y} \geq 0$. (Since $\hat{y}>0$.)
(iv) $\hat{y} \cdot\left(\hat{\mathbf{x}}^{\top} \mathbf{D} \hat{\mathbf{x}}-1\right)=0 . \quad\left(\right.$ Since $\left.\hat{\mathbf{x}}^{\top} \mathbf{D} \hat{\mathbf{x}}=1.\right)$

This implies that $\hat{\mathbf{x}}$ is a global optimal solution to P .

