Solutions to exam in SF1811 Optimization, 18 Jan 2014

1.(a) Let $\mathbf{x} = (x_{12}, x_{13}, x_{14}, x_{23}, x_{25}, x_{34}, x_{35}, x_{45})^{\mathsf{T}}$, where the variable x_{ij} stands for the flow in the arc from node *i* to node *j*. Let $\mathbf{c} = (c_{12}, c_{13}, c_{14}, c_{23}, c_{25}, c_{34}, c_{35}, c_{45})^{\mathsf{T}} = (1, k, k, 1, k, 1, k, 1)^{\mathsf{T}}$. Then the total cost for the flow is given by $\mathbf{c}^{\mathsf{T}} \mathbf{x}$.

The flow balance conditions in the nodes can be written Ax = b, where

$$\mathbf{A} = \begin{bmatrix} 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ -1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & -1 & 0 & 1 & 1 & 0 \\ 0 & 0 & -1 & 0 & 0 & -1 & 0 & 1 \\ 0 & 0 & 0 & 0 & -1 & 0 & -1 & -1 \end{bmatrix} \text{ and } \mathbf{b} = \begin{pmatrix} 30 \\ 20 \\ 0 \\ -35 \\ -15 \end{pmatrix}.$$

Finally, the given directions of the arcs imply the constraints $\mathbf{x} \ge \mathbf{0}$. (It is recommended to remove the last row in \mathbf{A} and the corresponding last component in \mathbf{b} to get a system without any redundant equation.)

1.(b) If we let x_{12} , x_{23} , x_{34} and x_{45} be basic variables, the values of these basic variables can be calculated as follows:

 $x_{12} = 30$, because of flow balance in node 1,

 $x_{23} = 50$, because of flow balance in node 2,

 $x_{34} = 50$, because of flow balance in node 3,

 $x_{45} = 15$, because of flow balance in node 4.

We see that the flow balance condition in node 5 also becomes fulfilled (since the problem is balanced).

1.(c) The reduced costs for the nonbasic variables can be calculted by $r_{ij} = c_{ij} - y_i + y_j$ for all nonbasic arcs,

where the scalars (simplex multipliers) y_i are calculated by

 $y_i - y_j = c_{ij}$ for all basic arcs, and $y_5 = 0$. We get: $y_5 = 0$, (by definition) $y_4 = c_{45} + y_5 = 1 + 0 = 1,$ $y_3 = c_{34} + y_4 = 1 + 1 = 2,$ $y_2 = c_{23} + y_3 = 1 + 2 = 3,$ $y_1 = c_{12} + y_2 = 1 + 3 = 4,$ and then $r_{13} = c_{13} - y_1 + y_3 = k - 4 + 2 = k - 2,$ $r_{14} = c_{14} - y_1 + y_4 = k - 4 + 1 = k - 3,$ $r_{25} = c_{25} - y_2 + y_5 = k - 3 + 0 = k - 3,$ $r_{35} = c_{35} - y_3 + y_5 = k - 2 + 0 = k - 2.$ We se that if $k \geq 3$ then all $r_{ij} \geq 0$ and the given basic solution is optimal. If k < 3 then $r_{14} < 0$ and then we could let $x_{14} = t$, $x_{12} = 30-t$, $x_{23} = 50-t$, $x_{34} = 50-t$ and $x_{45} = 15$. For $t \in (0, 30]$, this is a feasible solution with strictly decreasing cost when t increases. Thus, the basic solution from (b) is optimal if and only if $k \ge 3$.

2.(a) The considered LP problem is on the form

 $\label{eq:constraint} \mbox{minimize} \ \mathbf{c}^\mathsf{T} \mathbf{x} \ \mbox{subject to} \ \mathbf{A} \mathbf{x} = \mathbf{b} \ \mbox{and} \ \mathbf{x} \geq \mathbf{0},$

where $\mathbf{A} = \begin{bmatrix} 1 & -1 & 1 & -1 \\ 1 & 1 & -1 & -1 \end{bmatrix}$, $\mathbf{b} = \begin{pmatrix} 2 \\ 4 \end{pmatrix}$ and $\mathbf{c}^{\mathsf{T}} = (1, 3, 1, 1)$.

In the suggested solution, x_1 and x_2 are basic variables, i.e. $\beta = (1, 2)$ and $\nu = (3, 4)$.

The corresponding basic matrix is $\mathbf{A}_{\beta} = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$, while $\mathbf{A}_{\nu} = \begin{bmatrix} 1 & -1 \\ -1 & -1 \end{bmatrix}$.

The current values of the basic variables are $\mathbf{x}_{\beta} = \mathbf{\bar{b}}$, where $\mathbf{\bar{b}}$ is obtained from

$$\mathbf{A}_{\beta}\mathbf{\bar{b}} = \mathbf{b}$$
, i.e. $\begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \begin{pmatrix} \bar{b}_1 \\ \bar{b}_2 \end{pmatrix} = \begin{pmatrix} 2 \\ 4 \end{pmatrix}$, with the solution $\mathbf{\bar{b}} = \begin{pmatrix} \bar{b}_1 \\ \bar{b}_2 \end{pmatrix} = \begin{pmatrix} 3 \\ 1 \end{pmatrix}$

and thus $x_1 = 3$ and $x_2 = 1$, which agrees with the suggested solution.

The vector \mathbf{y} with simplex multipliers is obtained from the system $\mathbf{A}_{\beta}^{\mathsf{T}}\mathbf{y} = \mathbf{c}_{\beta}$, i.e.

$$\begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} 1 \\ 3 \end{pmatrix}, \text{ with the solution } \mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} -1 \\ 2 \end{pmatrix}.$$

The reduced costs for the non-basic variables are given by

$$\mathbf{r}_{\nu}^{\mathsf{T}} = \mathbf{c}_{\nu}^{\mathsf{T}} - \mathbf{y}^{\mathsf{T}} \mathbf{A}_{\nu} = (1, 1) - (-1, 2) \begin{bmatrix} 1 & -1 \\ -1 & -1 \end{bmatrix} = (4, 2)$$

Since these reduced costs are non-negative, the suggested solution is optimal. Thus, $\mathbf{x} = (3, 1, 0, 0)^{\mathsf{T}}$ is an optimal solution. The optimal value = $\mathbf{c}^{\mathsf{T}}\mathbf{x} = 6$.

2.(b) Since the primal problem is on the form

minimize
$$\mathbf{c}^{\mathsf{T}}\mathbf{x}$$
 subject to $\mathbf{A}\mathbf{x} = \mathbf{b}$ and $\mathbf{x} \ge \mathbf{0}$,

the corresponding dual problem D1 is on the form

maximize
$$\mathbf{b}^{\mathsf{T}}\mathbf{y}$$
 subject to $\mathbf{A}^{\mathsf{T}}\mathbf{y} \leq \mathbf{c}$,

which, written out in details, becomes

maximize
$$2y_1 + 4y_2$$

subject to $y_1 + y_2 \leq 1$,
 $-y_1 + y_2 \leq 3$,
 $y_1 - y_2 \leq 1$,
 $-y_1 - y_2 \leq 1$.

A careful figure shows that the feasible region is a rectangle with corners (1,0), (-1,2), (-2,1) and (0,-1). Level sets to the objective function $2y_1 + 4y_2$ are parallel lines orthogonal to the vector (2,4), with increasing values when moving "north-north-east".

The level set which corresponds to the maximal value of the objective function is given, from the figure, by the line $2y_1 + 4y_2 = 6$, which goes through the corner $(y_1, y_2) = (-1, 2)$. Thus, this is the optimal solution to the dual problem D1. The optimal value = $\mathbf{b}^{\mathsf{T}}\mathbf{y} = 6$.

2.(c) With surplus variables x_5 and x_6 , an LP problem on standard form is obtained:

minimize $\mathbf{c}^{\mathsf{T}}\mathbf{x}$ subject to $\mathbf{A}\mathbf{x} = \mathbf{b}$ and $\mathbf{x} \ge \mathbf{0}$,

where now $\mathbf{A} = \begin{bmatrix} 1 & -1 & 1 & -1 & -1 & 0 \\ 1 & 1 & -1 & -1 & 0 & -1 \end{bmatrix}$, $\mathbf{b} = \begin{pmatrix} 2 \\ 4 \end{pmatrix}$ and $\mathbf{c}^{\mathsf{T}} = (1, 3, 1, 1, 0, 0)$.

We start from the solution from (a), with $\beta = (1, 2)$ and $\nu = (3, 4, 5, 6)$, which is a feasible basic solution also to this new problem.

The matrix $\mathbf{A}_{\beta} = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$ and the vectors $\mathbf{\bar{b}} = \begin{pmatrix} 3 \\ 1 \end{pmatrix}$ and $\mathbf{y} = \begin{pmatrix} -1 \\ 2 \end{pmatrix}$ are the same as in (a), while the matrix $\mathbf{A}_{\nu} = \begin{bmatrix} 1 & -1 & -1 & 0 \\ -1 & -1 & 0 & -1 \end{bmatrix}$.

The reduced costs for the non-basic varibles are now give by

$$\mathbf{r}_{\nu}^{\mathsf{T}} = \mathbf{c}_{\nu}^{\mathsf{T}} - \mathbf{y}^{\mathsf{T}} \mathbf{A}_{\nu} = (1, 1, 0, 0) - (-1, 2) \begin{bmatrix} 1 & -1 & -1 & 0 \\ -1 & -1 & 0 & -1 \end{bmatrix} = (4, 2, -1, 2).$$

Since $r_{\nu_3} = r_5 = -1$ is smallest, and < 0, we let x_5 become a new basic variable.

The vector $\bar{\mathbf{a}}_5$ is obtained from the system $\mathbf{A}_{\beta}\bar{\mathbf{a}}_5 = \mathbf{a}_5$, which becomes

$$\begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \begin{pmatrix} \bar{a}_{15} \\ \bar{a}_{25} \end{pmatrix} = \begin{pmatrix} -1 \\ 0 \end{pmatrix}, \text{ with the solution } \bar{\mathbf{a}}_1 = \begin{pmatrix} \bar{a}_{15} \\ \bar{a}_{25} \end{pmatrix} = \begin{pmatrix} -0.5 \\ 0.5 \end{pmatrix}.$$

The value of the new basic variable x_5 is given by

$$t^{\max} = \min_{i} \left\{ \frac{\bar{b}_{i}}{\bar{a}_{i5}} \mid \bar{a}_{i5} > 0 \right\} = \frac{1}{0.5} = \frac{\bar{b}_{2}}{\bar{a}_{25}}$$

Here, the minimizing index is i = 2, so $x_{\beta_2} = x_2$ should leave the basis.

Now
$$\beta = (1,5)$$
 and $\nu = (2,3,4,6)$.
The corresponding basic matrix is $\mathbf{A}_{\beta} = \begin{bmatrix} 1 & -1 \\ 1 & 0 \end{bmatrix}$, while $\mathbf{A}_{\nu} = \begin{bmatrix} -1 & 1 & -1 & 0 \\ 1 & -1 & -1 & -1 \end{bmatrix}$.

The current values of the basic variables are $\mathbf{x}_{\beta} = \mathbf{\bar{b}}$, where $\mathbf{\bar{b}}$ is obtained from

$$\mathbf{A}_{\beta}\mathbf{\bar{b}} = \mathbf{b}$$
, i.e. $\begin{bmatrix} 1 & -1 \\ 1 & 0 \end{bmatrix} \begin{pmatrix} \bar{b}_1 \\ \bar{b}_2 \end{pmatrix} = \begin{pmatrix} 2 \\ 4 \end{pmatrix}$, with the solution $\mathbf{\bar{b}} = \begin{pmatrix} \bar{b}_1 \\ \bar{b}_2 \end{pmatrix} = \begin{pmatrix} 4 \\ 2 \end{pmatrix}$.

The vector \mathbf{y} with simplex multipliers is obtained from the system

$$\mathbf{A}_{\beta}^{\mathsf{T}}\mathbf{y} = \mathbf{c}_{\beta}$$
, i.e. $\begin{bmatrix} 1 & 1 \\ -1 & 0 \end{bmatrix} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, with the solution $\mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$.

The reduced costs for the non-basic variables are given by

$$\mathbf{r}_{\nu}^{\mathsf{T}} = \mathbf{c}_{\nu}^{\mathsf{T}} - \mathbf{y}^{\mathsf{T}} \mathbf{A}_{\nu} = (3, 1, 1, 0) - (0, 1) \begin{bmatrix} -1 & 1 & -1 & 0\\ 1 & -1 & -1 & -1 \end{bmatrix} = (2, 2, 2, 1).$$

Since these reduced costs are non-negative, the current basic solution is optimal. Thus, $\mathbf{x} = (4, 0, 0, 0, 2, 0)^{\mathsf{T}}$ is an optimal solution. The optimal value = $\mathbf{c}^{\mathsf{T}}\mathbf{x} = 4$.

2.(d) With slack variables x_5 and x_6 , an LP problem on standard form is obtained:

minimize $\mathbf{c}^{\mathsf{T}}\mathbf{x}$ subject to $\mathbf{A}\mathbf{x} = \mathbf{b}$ and $\mathbf{x} \ge \mathbf{0}$,

where now $\mathbf{A} = \begin{bmatrix} 1 & -1 & 1 & -1 & 1 & 0 \\ 1 & 1 & -1 & -1 & 0 & 1 \end{bmatrix}$, $\mathbf{b} = \begin{pmatrix} 2 \\ 4 \end{pmatrix}$ and $\mathbf{c}^{\mathsf{T}} = (1, 3, 1, 1, 0, 0)$. As recommended, we now start with $\beta = (5, 6)$ and $\nu = (1, 2, 3, 4)$. The corresponding basic matrix is $\mathbf{A}_{\beta} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, while $\mathbf{A}_{\nu} = \begin{bmatrix} 1 & -1 & 1 & -1 \\ 1 & 1 & -1 & -1 \end{bmatrix}$. The current values of the basic variables are $\mathbf{x}_{\beta} = \mathbf{\bar{b}}$, where $\mathbf{\bar{b}}$ is obtained from $\mathbf{A}_{\beta}\mathbf{\bar{b}} = \mathbf{b}$, i.e. $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{pmatrix} \bar{b}_1 \\ \bar{b}_2 \end{pmatrix} = \begin{pmatrix} 2 \\ 4 \end{pmatrix}$, with the solution $\mathbf{\bar{b}} = \begin{pmatrix} \bar{b}_1 \\ \bar{b}_2 \end{pmatrix} = \begin{pmatrix} 2 \\ 4 \end{pmatrix}$. The vector \mathbf{y} with simplex multipliers is obtained from the system $\mathbf{A}_{\beta}^{\mathsf{T}}\mathbf{y} = \mathbf{c}_{\beta}$, i.e. $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$, with the solution $\mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$. The reduced costs for the non-basic variables are given by $\mathbf{r}_{\nu}^{\mathsf{T}} = \mathbf{c}_{\nu}^{\mathsf{T}} - \mathbf{y}^{\mathsf{T}}\mathbf{A}_{\nu} = (1, 3, 1, 1) - (0, 0) \begin{bmatrix} 1 & -1 & 1 & -1 \\ 1 & 1 & -1 & -1 \end{bmatrix} = (1, 3, 1, 1).$

Since these reduced costs are non-negative, the current basic solution is optimal. Thus, $\mathbf{x} = (0, 0, 0, 0, 2, 4)^{\mathsf{T}}$ is an optimal solution. The optimal value $= \mathbf{c}^{\mathsf{T}} \mathbf{x} = 0$. **3.(a)** The considered problem can be written

minimize
$$\frac{1}{2}\mathbf{x}^{\mathsf{T}}\mathbf{H}\mathbf{x} + \mathbf{c}^{\mathsf{T}}\mathbf{x}$$
 subject to $\mathbf{A}\mathbf{x} = \mathbf{b}$,

where
$$\mathbf{H} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
, $\mathbf{c} = \begin{pmatrix} -1 \\ -1 \\ -1 \end{pmatrix}$, $\mathbf{A} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$ and $\mathbf{b} = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$.

The matrix $\mathbf{H} = \mathbf{I}$ is positive definite, so we have a convex QP problem.

We use elementary row operations (Gauss-Jordan) to put the system $\mathbf{A}\mathbf{x} = \mathbf{b}$ on reduced row echelon form: $\begin{bmatrix} 1 & 1 & 0 & | & 1 \\ 0 & 1 & 1 & | & 3 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 0 & -1 & | & -2 \\ 0 & 1 & 1 & | & 3 \end{bmatrix}$

The general solution to $\mathbf{A}\mathbf{x} = \mathbf{b}$ is then obtained by letting $x_3 = v$ (an arbitrary number) whereafter $x_1 = -2 + v$ and $x_2 = 3 - v$.

Thus, the complete set of solutions to $\mathbf{A}\mathbf{x} = \mathbf{b}$ is given by

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} -2 \\ 3 \\ 0 \end{pmatrix} + \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} v = \bar{\mathbf{x}} + \mathbf{z} v,$$

where $\bar{\mathbf{x}}$ is one solution to $\mathbf{A}\mathbf{x} = \mathbf{b}$, and \mathbf{z} is a basis for the null-space of \mathbf{A} .

Changing variables from \mathbf{x} to v leads to a quadratic objective function which is uniquely minimized by the solution \hat{v} to the system $(\mathbf{z}^{\mathsf{T}}\mathbf{H}\mathbf{z}) v = -\mathbf{z}^{\mathsf{T}}(\mathbf{H}\bar{\mathbf{x}} + \mathbf{c})$, provided that $\mathbf{z}^{\mathsf{T}}\mathbf{H}\mathbf{z}$ is positive definite (> 0 in this one-variable case).

We get that
$$\mathbf{z}^{\mathsf{T}}\mathbf{H}\mathbf{z} = \mathbf{z}^{\mathsf{T}}\mathbf{z} = 3 > 0$$
 and $-\mathbf{z}^{\mathsf{T}}(\mathbf{H}\mathbf{\bar{x}} + \mathbf{c}) = -\mathbf{z}^{\mathsf{T}}(\mathbf{\bar{x}} + \mathbf{c}) = 6$,

so the unique solution to the system above is $\hat{v} = 6/3 = 2$,

and the unique global optimal solution to the original problem is

$$\hat{\mathbf{x}} = \bar{\mathbf{x}} + \mathbf{z}\,\hat{v} = \begin{pmatrix} -2\\ 3\\ 0 \end{pmatrix} + \begin{pmatrix} 2\\ -2\\ 2 \end{pmatrix} = \begin{pmatrix} 0\\ 1\\ 2 \end{pmatrix}.$$

3.(b) The Lagrange optimality conditions for the considered convex

QP problem are given by the system
$$\begin{aligned} \mathbf{H}\mathbf{x} - \mathbf{A}^{\mathsf{T}}\mathbf{u} &= -\mathbf{c} \\ \mathbf{A}\mathbf{x} &= \mathbf{b} \end{aligned}$$

The equations $\mathbf{H}\mathbf{x} - \mathbf{A}^{\mathsf{T}}\mathbf{u} = -\mathbf{c}$ are in our case equivalent to $\mathbf{x} = \mathbf{A}^{\mathsf{T}}\mathbf{u} - \mathbf{c}$. If this is combined with the remaining equations $\mathbf{A}\mathbf{x} = \mathbf{b}$, we get that $\mathbf{A}\mathbf{A}^{\mathsf{T}}\mathbf{u} = \mathbf{A}\mathbf{c} + \mathbf{b}$, which in our case becomes

$$\begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} = \begin{pmatrix} -1 \\ 1 \end{pmatrix}, \text{ with the unique solution } \hat{\mathbf{u}} = \begin{pmatrix} -1 \\ 1 \end{pmatrix}.$$

The corresponding unique $\hat{\mathbf{x}}$ (which together with $\hat{\mathbf{u}}$ satisfies the Lagrange conditions)

is then given by
$$\hat{\mathbf{x}} = \mathbf{A}^{\mathsf{T}} \hat{\mathbf{u}} - \mathbf{c} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{pmatrix} -1 \\ 1 \end{pmatrix} - \begin{pmatrix} -1 \\ -1 \\ -1 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix}.$$

Since **H** is positive definite, the Lagrange conditions are both necessary and sufficient for a global optimum, and thus $\hat{\mathbf{x}}$ is the unique global optimal solution to the considered QP problem. As expected, the obtained results in (a) and (b) agree.

3.(c)

Let $f(\mathbf{x}) = \frac{1}{2}(x_1^2 + x_2^2 + x_3^2) - x_1 - x_2 - x_3$, $g_1(\mathbf{x}) = x_1 + x_2 - 1$, $g_2(\mathbf{x}) = 3 - x_2 - x_3$. Then the considered problem becomes: minimize $f(\mathbf{x})$ subject to $g_i(\mathbf{x}) \le 0$ for i = 1, 2. The KKT conditions for this problem become

$$\begin{split} (\text{KKT-1}) \quad & \frac{\partial f}{\partial x_j} + y_1 \frac{\partial g_1}{\partial x_j} + y_2 \frac{\partial g_2}{\partial x_j} = 0 \text{ for } j = 1, 2, 3 \text{, i.e.} \\ & x_1 - 1 + y_1 = 0, \\ & x_2 - 1 + y_1 - y_2 = 0, \\ & x_3 - 1 - y_2 = 0, \end{split} \\ (\text{KKT-2}) \quad & g_i(\mathbf{x}) \leq 0 \text{ for } i = 1, 2 \text{, i.e.} \\ & x_1 + x_2 - 1 \leq 0, \\ & 3 - x_2 - x_3 \leq 0, \end{aligned} \\ (\text{KKT-3}) \quad & y_1 \geq 0 \text{ och } y_2 \geq 0. \end{split}$$

(KKT–4)
$$y_i g_i(\mathbf{x}) = 0$$
 for $i = 1, 2$, i.e.
 $y_1(x_1 + x_2 - 1) = 0,$
 $y_2(3 - x_2 - x_3) = 0.$

Let $\hat{\mathbf{x}} = (0, 1, 2)^{\mathsf{T}}$, as in (a) and (b). Then $g_1(\hat{\mathbf{x}}) = 0$ and $g_2(\hat{\mathbf{x}}) = 0$ so that (KKT-2) and (KKT-4) are satisfied by $\hat{\mathbf{x}}$, for all y_1 and y_2 .

Further, the conditions (KKT–1) are satisfied by $\mathbf{\hat{x}} = (0, 1, 2)^{\mathsf{T}}$ and $\mathbf{\hat{y}} = (\hat{y}_1, \hat{y}_2)^{\mathsf{T}}$ if and only if $\mathbf{\hat{y}} = (1, 1)^{\mathsf{T}}$. But $\mathbf{\hat{y}} = (1, 1)^{\mathsf{T}}$ satisfies also (KKT–3).

Thus, $\hat{\mathbf{x}} = (0, 1, 2)^{\mathsf{T}}$ is a KKT point. Since f, g_1 and g_2 are convex functions, every KKT point is a global optimal solution, and thus $\hat{\mathbf{x}}$ is a global optimal solution to the considered inequality-constrained QP problem.

3.(d)

Now let $f(\mathbf{x}) = \frac{1}{2}(x_1^2 + x_2^2 + x_3^2) - x_1 - x_2 - x_3$, $g_1(\mathbf{x}) = 1 - x_1 - x_2$, $g_2(\mathbf{x}) = x_2 + x_3 - 3$. The KKT conditions for this problem become

$$\begin{array}{ll} (\mathrm{KKT-1}) & \frac{\partial f}{\partial x_j} + y_1 \frac{\partial g_1}{\partial x_j} + y_2 \frac{\partial g_2}{\partial x_j} = 0 \ \mathrm{for} \ j = 1, 2, 3 \ \mathrm{, \, i.e.} \\ & x_1 - 1 - y_1 = 0, \\ & x_2 - 1 - y_1 + y_2 = 0, \\ & x_3 - 1 + y_2 = 0, \end{array} \\ (\mathrm{KKT-2}) & g_i(\mathbf{x}) \leq 0 \ \mathrm{for} \ i = 1, 2 \ \mathrm{, \, i.e.} \\ & 1 - x_1 - x_2 \leq 0, \\ & x_2 + x_3 - 3 \leq 0, \end{array} \\ (\mathrm{KKT-3}) & y_1 \geq 0 \ \mathrm{och} \ y_2 \geq 0. \\ (\mathrm{KKT-4}) & y_i g_i(\mathbf{x}) = 0 \ \mathrm{for} \ i = 1, 2 \ \mathrm{, \, i.e.} \\ & y_1(1 - x_1 - x_2) = 0, \end{array}$$

$$y_2(x_2 + x_3 - 3) = 0.$$

The result from (c) indicate that the objective function would be decreased (compared to the solution in (c)) if $x_1 + x_2 > 1$ and $x_2 + x_3 < 3$, i.e. if the constraints in (d) are not satisfied with equality. So let us try with $y_1 = y_2 = 0$ in the KKT conditions above.

Then (KKT–3) and (KKT–4) are satisfied for all \mathbf{x} .

Further, the conditions (KKT-1) are satisfied if and only if $\mathbf{x} = (1, 1, 1)^{\mathsf{T}}$. But this \mathbf{x} satisfies also (KKT-2)!

Thus, $\mathbf{x} = (1, 1, 1)^{\mathsf{T}}$ is a KKT point. Again, since f, g_1 and g_2 are convex functions, every KKT point is a global optimal solution, and thus $\mathbf{x} = (1, 1, 1)^{\mathsf{T}}$ is a global optimal solution.

Interpretation (and a shorter way to solve the problem): If the constraints are completely neglected, so that the problem becomes simply to minimize $\frac{1}{2}(x_1^2 + x_2^2 + x_3^2) - x_1 - x_2 - x_3$ without any constraints, then the unique optimal solution would clearly be $\mathbf{x} = (1, 1, 1)^{\mathsf{T}}$. But since this solution happens to satisfy the constraints in (d), it must be the unique optimal solution also to the problem in (d). (Note that $\mathbf{x} = (1, 1, 1)^{\mathsf{T}}$ is not feasible, and thus not optimal, to the problems in (a)–(c).)

4.

Change notation on the constant from c to x.

Then we should minimize $f(x) = \frac{1}{2} \mathbf{h}(x)^{\mathsf{T}} \mathbf{h}(x) = \frac{1}{2} (h_1(x)^2 + h_2(x)^2),$ where $\mathbf{h}(x) = \begin{pmatrix} h_1(x) \\ h_2(x) \end{pmatrix}$, with $h_1(x) = \frac{1}{1+xt_1} - w_1 = \frac{1}{1+x} - 0.46,$ $h_2(x) = \frac{1}{1+xt_2} - w_2 = \frac{1}{1+3x} - 0.22.$

This is a nonlinear least-squares problem with n = 1 (one single variable x) and m = 2 (two terms in the quadratic sum).

Differentiation gives that

$$\nabla \mathbf{h}(x) = \begin{bmatrix} h'_1(x) \\ h'_2(x) \end{bmatrix}$$
, where $h'_1(x) = \frac{-1}{(1+x)^2}$ and $h'_2(x) = \frac{-3}{(1+3x)^2}$.

We should start in $x^{(1)} = 1$. Then

$$\mathbf{h}(x^{(1)}) = \begin{pmatrix} 0.04\\ 0.03 \end{pmatrix}$$
 and $\nabla \mathbf{h}(x^{(1)}) = \begin{bmatrix} -1/4\\ -3/16 \end{bmatrix} = \begin{bmatrix} -4/16\\ -3/16 \end{bmatrix}$.

In Gauss-Newtons method, $\nabla \mathbf{h}(x^{(1)})^{\mathsf{T}} \nabla \mathbf{h}(x^{(1)}) \mathbf{d} = -\nabla \mathbf{h}(x^{(1)})^{\mathsf{T}} \mathbf{h}(x^{(1)})$ should be solved. In our case, $\nabla \mathbf{h}(x^{(1)})^{\mathsf{T}} \nabla \mathbf{h}(x^{(1)}) = (-4/16)^2 + (-3/16)^2 = 25/256$ and $-\nabla \mathbf{h}(x^{(1)})^{\mathsf{T}} \mathbf{h}(x^{(1)}) = (4/16)(4/100) + (3/16)(3/100) = 25/1600$, so we get the equation (25/256) d = 25/1600, with the solution $d^{(1)} = 256/1600 = 0.16$. We try with $t_1 = 1$, so that $x^{(2)} = x^{(1)} + t_1 d^{(1)} = 1 + 0.16 = 1.16$. Then

$$h_1(x^{(2)}) = \frac{1}{2.16} - 0.46 = \frac{1 - 0.46 \cdot 2.16}{2.16} = \frac{0.0064}{2.16} < 0.04 = h_1(x^{(1)}) \text{ and}$$
$$h_2(x^{(2)}) = \frac{1}{4.48} - 0.22 = \frac{1 - 0.22 \cdot 4.48}{4.48} = \frac{0.0144}{4.48} < 0.03 = h_2(x^{(1)}).$$

Since $|h_1(x^{(2)})| < |h_1(x^{(1)})|$ and $|h_2(x^{(2)})| < |h_2(x^{(1)})|$ it follows that $f(x^{(2)}) < f(x^{(1)})$, which means that we should accept $t_1 = 1$.

Now we have made an iteration with Gauss-Newtons method and obtained the new suggested value c = 1.16, which is better than the starting value c = 1 since the quadratic sum $\frac{1}{2}\sum_{i=1}^{m} (\frac{1}{1+ct_i} - w_i)^2$ has decreased.

5.(a) The Lagrange function for the considered problem is given by

$$L(\mathbf{x}, y) = (\mathbf{x} - \mathbf{q})^{\mathsf{T}}(\mathbf{x} - \mathbf{q}) + y \cdot (\mathbf{x}^{\mathsf{T}} \mathbf{D} \mathbf{x} - 1)$$
, with $\mathbf{x} \in \mathbb{R}^n$ and $y \in \mathbb{R}$

The Lagrange relaxed problem PR_y is defined, for a given $y \ge 0$, as the problem of minimizing $L(\mathbf{x}, y)$ with respect to $\mathbf{x} \in \mathbb{R}^n$.

Since $L(\mathbf{x}, y) = \mathbf{x}^{\mathsf{T}} (\mathbf{I} + y \mathbf{D}) \mathbf{x} - 2\mathbf{q}^{\mathsf{T}} \mathbf{x} + \mathbf{q}^{\mathsf{T}} \mathbf{q} - y$, the optimal solution to PR_y is given by

$$\tilde{\mathbf{x}}(y) = (\mathbf{I} + y \, \mathbf{D})^{-1} \mathbf{q}$$
, i.e. $\tilde{x}_j(y) = \frac{q_j}{1 + y \, d_j}$, for $j = 1, \dots, n$.

Then the dual objective function becomes

$$\varphi(y) = L(\tilde{\mathbf{x}}(y), y) = -\mathbf{q}^{\mathsf{T}}(\mathbf{I} + y\mathbf{D})^{-1}\mathbf{q} + \mathbf{q}^{\mathsf{T}}\mathbf{q} - y = \mathbf{q}^{\mathsf{T}}\mathbf{q} - y - \sum_{j=1}^{n} \frac{q_j^2}{1 + y\,d_j}.$$

The dual problem consists of maximizing $\varphi(y)$ with respect to $y \ge 0$.

5.(b) Some calculus give that

$$\varphi'(y) = -1 + \sum_{j=1}^{n} \frac{q_j^2 d_j}{(1+y d_j)^2} \text{ and } \varphi''(y) = -\sum_{j=1}^{n} \frac{2q_j^2 d_j^2}{(1+y d_j)^3}.$$

In particular, $\varphi'(0) = -1 + \sum_{j=1}^{n} q_j^2 d_j = \mathbf{q}^\mathsf{T} \mathbf{D} \mathbf{q} - 1 > 0.$

Further, $\varphi''(y) < 0$ for all $y \ge 0$, which implies that $\varphi'(y)$ is continuous and strictly decreasing for $y \ge 0$, and also that $\varphi(y)$ is strictly concave for $y \ge 0$.

Finally,
$$\varphi'(y_1) < -1 + \sum_{j=1}^n \frac{q_j^2 d_j}{(y_1 d_j)^2} = -1 + \frac{1}{y_1^2} \sum_{j=1}^n \frac{q_j^2}{d_j} = 0$$
 if $y_1^2 = \sum_{j=1}^n \frac{q_j^2}{d_j} > 0$.

5.(c) The results in (b) imply that there is a unique $\hat{y} > 0$ such that $\varphi'(\hat{y}) = 0$. In addition, since $\varphi(y)$ is strictly concave for $y \ge 0$, this unique $\hat{y} > 0$ which satisfies $\varphi'(\hat{y}) = 0$ is the unique optimal solution to the dual problem.

Now let
$$\hat{\mathbf{x}} = \tilde{\mathbf{x}}(\hat{y})$$
. Then $\hat{x}_j = \tilde{x}_j(\hat{y}) = \frac{q_j}{1 + \hat{y} d_j}$, so that $\varphi'(\hat{y}) = 0$ implies that
 $0 = \sum_{j=1}^n \frac{q_j^2 d_j}{(1 + \hat{y} d_j)^2} - 1 = \sum_{j=1}^n d_j \hat{x}_j^2 - 1 = \hat{\mathbf{x}}^\mathsf{T} \mathbf{D} \hat{\mathbf{x}} - 1.$

Then $\hat{\mathbf{x}}$, together with \hat{y} , satisfies the global optimality conditions (GOC):

- (i) $L(\hat{\mathbf{x}}, \hat{y}) \leq L(\mathbf{x}, \hat{y})$ for all $\mathbf{x} \in \mathbb{R}^n$. (Since $\hat{\mathbf{x}} = \tilde{\mathbf{x}}(\hat{y})$.)
- (ii) $\mathbf{\hat{x}}^{\mathsf{T}}\mathbf{D}\,\mathbf{\hat{x}} 1 \leq 0.$ (Since $\mathbf{\hat{x}}^{\mathsf{T}}\mathbf{D}\,\mathbf{\hat{x}} = 1.$)
- (iii) $\hat{y} \ge 0$. (Since $\hat{y} > 0$.)
- (iv) $\hat{\mathbf{y}} \cdot (\hat{\mathbf{x}}^{\mathsf{T}} \mathbf{D} \, \hat{\mathbf{x}} 1) = 0.$ (Since $\hat{\mathbf{x}}^{\mathsf{T}} \mathbf{D} \, \hat{\mathbf{x}} = 1.$)

This implies that $\hat{\mathbf{x}}$ is a global optimal solution to P.