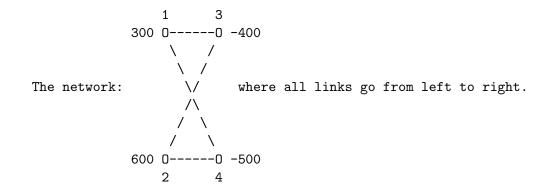
Solutions to exam in SF1811 Optimization, Jan 14, 2015



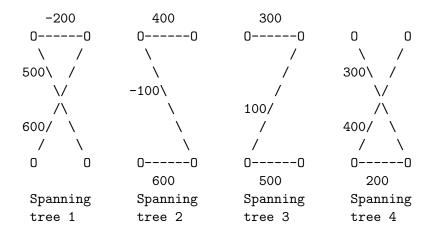
1.(a) Let $\mathbf{x} = (x_{13}, x_{14}, x_{23}, x_{24})^{\mathsf{T}}$, where the variable x_{ij} stands for the flow in the link from node *i* to node *j*, and let $\mathbf{c} = (c_{13}, c_{14}, c_{23}, c_{24})^{\mathsf{T}}$. Then the total cost for the flow is given by $\mathbf{c}^{\mathsf{T}}\mathbf{x}$.

The flow balance conditions in the nodes can be written Ax = b, where

$$\mathbf{A} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ -1 & 0 & -1 & 0 \\ 0 & -1 & 0 & -1 \end{bmatrix} \text{ and } \mathbf{b} = \begin{pmatrix} 300 \\ 600 \\ -400 \\ -500 \end{pmatrix}.$$

Finally, the given directions of the links imply the constraints $\mathbf{x} \ge \mathbf{0}$. (It is recommended to remove the last row in \mathbf{A} and the corresponding last component in \mathbf{b} to get a system without any redundant equation.)

1.(b) The four different spanning trees are shown in the following figure, together with the unique link flows which satisfy Ax = b.



The link flows in the first spanning tree are calculated as follows: The only way to satisfy the supply constraint in node 2 is to let $x_{23} = 600$. Then the only way to satisfy the demand constraint in node 3 is to let $x_{13} = -200$. Then the only way to satisfy the supply constraint in node 1 is to let $x_{14} = 500$. Then the demand constraint in node 4 is also satisfied. The link flows for the other spanning trees are calculated in a similar way.

We thus have the following four basic solutions:

 $\mathbf{x} = (-200, 500, 600, 0)^{\mathsf{T}}$, corresponding to spanning tree number 1,

 $\mathbf{x} = (400, -100, 0, 600)^{\mathsf{T}}$, corresponding to spanning tree number 2,

 $\mathbf{x} = (300, 0, 100, 500)^{\mathsf{T}}$, corresponding to spanning tree number 3, and

 $\mathbf{x} = (0, 300, 400, 200)^{\mathsf{T}}$, corresponding to spanning tree number 4.

All these four solutions satisfy Ax = b, but only the last two satisfy $x \ge 0$.

Thus, the basic solutions corresponding to spanning trees 3 and 4 are *feasible* basic solutions, while the basic solutions corresponding to spanning trees 1 and 2 are *infeasible* basic solutions.

1.(c) For a given feasible basic solution, the simplex multipliers y_i for the different nodes are calculated from $y_4 = 0$ and $y_i - y_j = c_{ij}$ for all links (i, j) in the corresponding spanning tree.

For the feasible basic solution corresponding to spanning tree 3, we get

 $y_4 = 0,$ $y_2 = y_4 + c_{24} = c_{24},$ $y_3 = y_2 - c_{23} = c_{24} - c_{23},$ $y_1 = y_3 + c_{13} = c_{24} - c_{23} + c_{13}.$ The reduced cost for the only non-basic variable is then given by $r_{14} = c_{14} - y_1 + y_4 = c_{14} - c_{24} + c_{23} - c_{13}.$ Thus, if $c_{13} - c_{14} - c_{23} + c_{24} < 0$ then $r_{14} > 0$, and then $\mathbf{x} = (300, 0, 100, 500)^{\mathsf{T}}$ is the unique optimal solution to the considered problem.

For the feasible basic solution corresponding to spanning tree 4, we get

 $y_4 = 0,$ $y_2 = y_4 + c_{24} = c_{24},$ $y_1 = y_4 + c_{14} = c_{14},$ $y_3 = y_2 - c_{23} = c_{24} - c_{23},$

The reduced cost for the only non-basic variable is then given by

 $r_{13} = c_{13} - y_1 + y_3 = c_{13} - c_{14} + c_{24} - c_{23}.$

Thus, if $c_{13} - c_{14} - c_{23} + c_{24} > 0$ then $r_{13} > 0$, and then $\mathbf{x} = (0, 300, 400, 200)^{\mathsf{T}}$ is the unique optimal solution to the considered problem.

If $c_{13} - c_{14} - c_{23} + c_{24} = 0$ then both the above feasible basic solutions are optimal solutions, and then every convex combination of these two solutions, i.e. $\mathbf{x} = t (300, 0, 100, 500)^{\mathsf{T}} + (1-t) (0, 300, 400, 200)^{\mathsf{T}}$, where $t \in [0, 1]$, is also an optimal solution since the constraints and the objective function are linear. As an example, the following three solutions (corresponding to t = 1/3, 1/2 and 2/3) are optimal solutions for the case that $c_{13} - c_{14} - c_{23} + c_{24} = 0$: $\mathbf{x} = (100, 200, 300, 300)^{\mathsf{T}}$, $\mathbf{x} = (150, 150, 250, 350)^{\mathsf{T}}$ and $\mathbf{x} = (200, 100, 200, 400)^{\mathsf{T}}$. 2.(a) We have an LP problem on the standard form

where $\mathbf{A} = \begin{bmatrix} 0 & 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 & 0 \end{bmatrix}$, $\mathbf{b} = \begin{pmatrix} 8 \\ 4 \end{pmatrix}$ and $\mathbf{c}^{\mathsf{T}} = (4, 4, 2, 4, 4)$.

The starting solution should have the basic variables x_1 and x_5 , which means that $\beta = (1,5)$ and $\nu = (2,3,4)$.

The corresponding basic matrix is $\mathbf{A}_{\beta} = \begin{bmatrix} 0 & 4 \\ 4 & 0 \end{bmatrix}$, while $\mathbf{A}_{\nu} = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{bmatrix}$.

The values of the current basic variables are given by $\mathbf{x}_{\beta} = \mathbf{\bar{b}}$, where the vector $\mathbf{\bar{b}}$ is calculated from the system $\mathbf{A}_{\beta}\mathbf{\bar{b}} = \mathbf{b}$, i.e.

$$\begin{bmatrix} 0 & 4 \\ 4 & 0 \end{bmatrix} \begin{pmatrix} \bar{b}_1 \\ \bar{b}_2 \end{pmatrix} = \begin{pmatrix} 8 \\ 4 \end{pmatrix}, \text{ with the solution } \bar{\mathbf{b}} = \begin{pmatrix} \bar{b}_1 \\ \bar{b}_2 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}.$$

The vector \mathbf{y} with simplex multipliers is obtained by the system $\mathbf{A}_{\beta}^{\mathsf{T}}\mathbf{y} = \mathbf{c}_{\beta}$, i.e.

$$\begin{bmatrix} 0 & 4 \\ 4 & 0 \end{bmatrix} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} 4 \\ 4 \end{pmatrix}, \text{ with the solution } \mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}.$$

Then the reduced costs for the non-basic variables are obtained from

$$\mathbf{r}_{\nu}^{\mathsf{T}} = \mathbf{c}_{\nu}^{\mathsf{T}} - \mathbf{y}^{\mathsf{T}} \mathbf{A}_{\nu} = (4, \ 2, \ 4) - (1, \ 1) \begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{bmatrix} = (0, \ -2, \ 0)$$

Since $r_{\nu_2} = r_3 = -2$ is smallest, and < 0, we let x_3 become the new basic variable.

Then we should calculate the vector $\bar{\mathbf{a}}_3$ from the system $\mathbf{A}_{\beta}\bar{\mathbf{a}}_3 = \mathbf{a}_3$, i.e.

$$\begin{bmatrix} 0 & 4 \\ 4 & 0 \end{bmatrix} \begin{pmatrix} \bar{a}_{13} \\ \bar{a}_{23} \end{pmatrix} = \begin{pmatrix} 2 \\ 2 \end{pmatrix}, \text{ with the solution } \bar{\mathbf{a}}_3 = \begin{pmatrix} \bar{a}_{13} \\ \bar{a}_{23} \end{pmatrix} = \begin{pmatrix} 0.5 \\ 0.5 \end{pmatrix}.$$

The largest permitted value of the new basic variable x_3 is then given by

$$t^{\max} = \min_{i} \left\{ \frac{\bar{b}_{i}}{\bar{a}_{i3}} \mid \bar{a}_{i3} > 0 \right\} = \min\left\{ \frac{1}{0.5}, \frac{2}{0.5} \right\} = \frac{1}{0.5} = \frac{\bar{b}_{1}}{\bar{a}_{13}}$$

Minimizing index is i = 1, which implies that $x_{\beta_1} = x_1$ should no longer be a basic variable. Its place as basic variable is taken by x_3 , so that $\beta = (3, 5)$ and $\nu = (2, 1, 4)$.

The corresponding basic matrix is $\mathbf{A}_{\beta} = \begin{bmatrix} 2 & 4 \\ 2 & 0 \end{bmatrix}$, while $\mathbf{A}_{\nu} = \begin{bmatrix} 1 & 0 & 3 \\ 3 & 4 & 1 \end{bmatrix}$.

The values of the current basic variables are $\mathbf{x}_{\beta} = \mathbf{\bar{b}}$, where the vector $\mathbf{\bar{b}}$ is calculated from the system $\mathbf{A}_{\beta}\mathbf{\bar{b}} = \mathbf{b}$, i.e.

$$\begin{bmatrix} 2 & 4 \\ 2 & 0 \end{bmatrix} \begin{pmatrix} \bar{b}_1 \\ \bar{b}_2 \end{pmatrix} = \begin{pmatrix} 8 \\ 4 \end{pmatrix}, \text{ with the solution } \bar{\mathbf{b}} = \begin{pmatrix} \bar{b}_1 \\ \bar{b}_2 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}.$$

The vector \mathbf{y} with simplex multipliers is obtained from the system $\mathbf{A}_{\beta}^{\mathsf{T}}\mathbf{y} = \mathbf{c}_{\beta}$, i.e.

$$\begin{bmatrix} 2 & 2 \\ 4 & 0 \end{bmatrix} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} 2 \\ 4 \end{pmatrix}, \text{ with the solution } \mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}.$$

Then the reduced costs for the non-basic variables are obtained from

$$\mathbf{r}_{\nu}^{\mathsf{T}} = \mathbf{c}_{\nu}^{\mathsf{T}} - \mathbf{y}^{\mathsf{T}} \mathbf{A}_{\nu} = (4, 4, 4) - (1, 0) \begin{bmatrix} 1 & 0 & 3\\ 3 & 4 & 1 \end{bmatrix} = (3, 4, 1).$$

Since $\mathbf{r}_{\nu} \geq \mathbf{0}$ the current feasible basic solution is optimal.

Thus, $\mathbf{x} = (0, 0, 2, 0, 1)^{\mathsf{T}}$ is an optimal solution, with optimal value $\mathbf{c}^{\mathsf{T}}\mathbf{x} = 8$.

2.(b) If the primal problem is on the standard form

$$\begin{array}{ll} \text{minimize} & \mathbf{c}^{\mathsf{T}} \mathbf{x} \\ \text{subject to} & \mathbf{A} \mathbf{x} = \mathbf{b}, \\ & \mathbf{x} \geq \mathbf{0}, \end{array}$$

the corresponding dual problem is: maximize $\mathbf{b}^{\mathsf{T}}\mathbf{y}$ subject to $\mathbf{A}^{\mathsf{T}}\mathbf{y} \leq \mathbf{c}$, which becomes

This dual problem can be illustrated by drawing the constraints and some level lines for the objective function in a coordinate system with y_1 and y_2 on the axes. (The figure is omitted here.)

It is well known that an optimal solution to this problem is given by the vector \mathbf{y} of "simplex multipliers" for the optimal basic solution in (a) above, i.e. $\mathbf{y} = (1, 0)^{\mathsf{T}}$. Alternatively, this can be seen from the figure (which is omitted here).

Check: It is easy to verify that $\mathbf{y} = (1, 0)^{\mathsf{T}}$ satisfies the dual constraints, with dual objective value $8y_1 + 4y_2 = 8$ = the optimal value of the primal problem. Thus, $\mathbf{y} = (1, 0)^{\mathsf{T}}$ is an optimal solution to the dual problem. **2.(c)**

If the second constraint in the primal problem is removed, the corresponding dual problem becomes

maximize
$$8y$$

subject to $0y \leq 4$,
 $y \leq 4$,
 $2y \leq 2$,
 $3y \leq 4$,
 $4y \leq 4$.

The optimal solution to this problem is clearly y = 1, with the optimal value 8y = 8. But then the optimal value of the reduced primal problem must also be = 8.

Since the optimal solution $\mathbf{x} = (0, 0, 2, 0, 1)^{\mathsf{T}}$ from (a) above is feasible also to the reduced primal problem, and still has the objective value $\mathbf{c}^{\mathsf{T}}\mathbf{x} = 8$, it follows that $\mathbf{x} = (0, 0, 2, 0, 1)^{\mathsf{T}}$ is an optimal solution also to the reduced primal problem!

(But not a basic solution. Two optimal basic solutions are now $\mathbf{x} = (0, 0, 4, 0, 0)^{\mathsf{T}}$ and $\mathbf{x} = (0, 0, 0, 0, 2)^{\mathsf{T}}$, with objective values = 8.)

2.(d)

If the first constraint in the primal problem is removed, the corresponding dual problem becomes

maximize
$$4y$$

subject to $4y \leq 4$,
 $3y \leq 4$,
 $2y \leq 2$,
 $y \leq 4$,
 $0y \leq 4$.

The optimal solution to this problem is clearly y = 1, with the optimal value 4y = 4, and then the optimal value of the reduced primal problem must also be = 4. But the optimal solution $\mathbf{x} = (0, 0, 2, 0, 1)^{\mathsf{T}}$ from (a) above still has the objective value $\mathbf{c}^{\mathsf{T}}\mathbf{x} = 8 > 4$, so it can *not* be an optimal solution to the reduced primal problem! (Two optimal basic solutions are now $\mathbf{x} = (0, 0, 2, 0, 0)^{\mathsf{T}}$ and $\mathbf{x} = (1, 0, 0, 0, 0)^{\mathsf{T}}$, with objective values = 4.) 3.(a)

The objective function is $f(\mathbf{x}) = \frac{1}{2} \mathbf{x}^{\mathsf{T}} \mathbf{H} \mathbf{x} + \mathbf{c}^{\mathsf{T}} \mathbf{x}$, with $\mathbf{H} = \begin{bmatrix} 1 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 1 \end{bmatrix}$, $\mathbf{c} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$.

 LDL^{T} -factorization of \mathbf{H} gives

$$\mathbf{H} = \mathbf{L}\mathbf{D}\mathbf{L}^{\mathsf{T}} = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ -1 & -2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -4 \end{bmatrix} \begin{bmatrix} 1 & -1 & -1 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{bmatrix}$$

Since there is a negative diagonal element in **D**, the matrix **H** is *not* positive semidefinite, which in turn implies that there is no optimal solution to the problemen of minimizing $f(\mathbf{x})$ without constraints. (With e.g. $\mathbf{d} = (1, 1, 1)^{\mathsf{T}}$, $f(t \mathbf{d}) = -t^2 \to -\infty$ when $t \to \infty$.)

3.(b)

We now have a QP problem with equality constraints, i.e. a problem of the form minimize $\frac{1}{2}\mathbf{x}^{\mathsf{T}}\mathbf{H}\mathbf{x} + \mathbf{c}^{\mathsf{T}}\mathbf{x}$ subject to $\mathbf{A}\mathbf{x} = \mathbf{b}$, with \mathbf{H} and \mathbf{c} as above, $\mathbf{A} = \begin{bmatrix} 1 & -1 & 1 \end{bmatrix}$ and $\mathbf{b} = 0$. The general solution to $\mathbf{A}\mathbf{x} = \mathbf{b}$, i.e. to $x_1 - x_2 + x_3 = 0$, is given by

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \cdot v_1 + \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} \cdot v_2, \text{ for arbitrary values on } v_1 \text{ and } v_2,$$

$$\begin{pmatrix} 0 \end{pmatrix} \qquad \qquad \begin{bmatrix} 1 & -1 \end{bmatrix}$$

which means that $\bar{\mathbf{x}} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ is a feasible solution, and $\mathbf{Z} = \begin{bmatrix} 1 & -1 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}$ is a matrix whos columns form a basis for the null space of \mathbf{A} .

After the variable change $\mathbf{x} = \bar{\mathbf{x}} + \mathbf{Z}\mathbf{v}$ we should solve the system $(\mathbf{Z}^{\mathsf{T}}\mathbf{H}\mathbf{Z})\mathbf{v} = -\mathbf{Z}^{\mathsf{T}}(\mathbf{H}\bar{\mathbf{x}}+\mathbf{c})$, provided that $\mathbf{Z}^{\mathsf{T}}\mathbf{H}\mathbf{Z}$ is at least positive semidefinite.

We have that $\mathbf{Z}^{\mathsf{T}}\mathbf{H}\mathbf{Z} = \begin{bmatrix} 1 & -2 \\ -2 & 4 \end{bmatrix}$, which is positive semidefinite (but not positive definite). The system $(\mathbf{Z}^{\mathsf{T}}\mathbf{H}\mathbf{Z})\mathbf{v} = -\mathbf{Z}^{\mathsf{T}}(\mathbf{H}\mathbf{\bar{x}} + \mathbf{c})$ becomes $\begin{bmatrix} 1 & -2 \\ -2 & 4 \end{bmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$, with the solutions $\mathbf{\hat{v}}(t) = \begin{pmatrix} 2t \\ t \end{pmatrix}$, for arbitrary values on the real number t, which implies

with the solutions $\hat{\mathbf{v}}(t) = \begin{pmatrix} 2t \\ t \end{pmatrix}$, for arbitrary values on the real number t, which implies that $\hat{\mathbf{x}}(t) = \bar{\mathbf{x}} + \mathbf{Z}\hat{\mathbf{v}}(t) = \begin{pmatrix} t \\ 2t \\ t \end{pmatrix}$, for $t \in \mathbb{R}$, are the (infinite number of) optimal solutions.

Note that $f(\mathbf{\hat{x}}(t)) = 0$ for all $t \in \mathbb{R}$.

3.(c)

Again, we have a problem on the form: minimize $\frac{1}{2}\mathbf{x}^{\mathsf{T}}\mathbf{H}\mathbf{x} + \mathbf{c}^{\mathsf{T}}\mathbf{x}$ subject to $\mathbf{A}\mathbf{x} = \mathbf{b}$,

with **H** and **c** as above, $\mathbf{A} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$, and $\mathbf{b} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$.

The general solution to $\mathbf{A}\mathbf{x} = \mathbf{b}$ is now $\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} \cdot v$, for $v \in \mathbb{R}$, which implies that

$$\bar{\mathbf{x}} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
 is a feasible solution, and $\mathbf{z} = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$ form a basis for the null space of \mathbf{A} .

After the variable change $\mathbf{x} = \bar{\mathbf{x}} + \mathbf{z}v$, we should solve the system $(\mathbf{z}^{\mathsf{T}}\mathbf{H}\mathbf{z})v = -\mathbf{z}^{\mathsf{T}}(\mathbf{H}\bar{\mathbf{x}} + \mathbf{c})$, provided that $\mathbf{z}^{\mathsf{T}}\mathbf{H}\mathbf{z}$ is at least ≥ 0 .

We have that $\mathbf{z}^{\mathsf{T}}\mathbf{H}\mathbf{z} = 6 > 0$, so the system $(\mathbf{z}^{\mathsf{T}}\mathbf{H}\mathbf{z})v = -\mathbf{z}^{\mathsf{T}}(\mathbf{H}\mathbf{\bar{x}} + \mathbf{c})$ becomes 6v = 0, with the unique solution $\hat{v} = 0$, so that $\hat{\mathbf{x}} = \mathbf{\bar{x}} + \mathbf{z} \hat{v} = \mathbf{0}$ is the unique optimal solution.

4.(a) The Lagrange function for the considered problem is given by

$$L(\mathbf{x}, \mathbf{y}) = \frac{1}{2} (\mathbf{x} - \mathbf{q})^{\mathsf{T}} (\mathbf{x} - \mathbf{q}) + \mathbf{y}^{\mathsf{T}} (\mathbf{b} - \mathbf{A}\mathbf{x}), \text{ with } \mathbf{x} \in \mathbb{R}^n \text{ and } y \in \mathbb{R}^m.$$

The Lagrange relaxed problem $\operatorname{PR}_{\mathbf{y}}$ is defined, for a given $\mathbf{y} \ge \mathbf{0}$, as the problem of minimizing $L(\mathbf{x}, \mathbf{y})$ with respect to $\mathbf{x} \in \mathbb{R}^n$.

Since $L(\mathbf{x}, \mathbf{y}) = \frac{1}{2} \mathbf{x}^{\mathsf{T}} \mathbf{I} \mathbf{x} - (\mathbf{A}^{\mathsf{T}} \mathbf{y} + \mathbf{q})^{\mathsf{T}} \mathbf{x} + \mathbf{b}^{\mathsf{T}} \mathbf{y} + \frac{1}{2} \mathbf{q}^{\mathsf{T}} \mathbf{q}$, and the unit matrix \mathbf{I} is positive definite, the unique optimal solution to $\mathrm{PR}_{\mathbf{y}}$ is given by $\tilde{\mathbf{x}}(\mathbf{y}) = \mathbf{A}^{\mathsf{T}} \mathbf{y} + \mathbf{q}$.

Then the dual objective function becomes

$$\varphi(\mathbf{y}) = L(\tilde{\mathbf{x}}(\mathbf{y}), \mathbf{y}) = -\frac{1}{2} (\mathbf{A}^{\mathsf{T}} \mathbf{y} + \mathbf{q})^{\mathsf{T}} (\mathbf{A}^{\mathsf{T}} \mathbf{y} + \mathbf{q}) + \mathbf{b}^{\mathsf{T}} \mathbf{y} + \frac{1}{2} \mathbf{q}^{\mathsf{T}} \mathbf{q} =$$
$$= -\frac{1}{2} \mathbf{y}^{\mathsf{T}} \mathbf{A} \mathbf{A}^{\mathsf{T}} \mathbf{y} + (\mathbf{b} - \mathbf{A} \mathbf{q})^{\mathsf{T}} \mathbf{y}.$$

4.(b) From now on,
$$\mathbf{A} = \begin{bmatrix} 1 & 1 & -1 & 1 \\ 1 & 1 & 1 & -1 \end{bmatrix}$$
, $\mathbf{b} = \begin{pmatrix} 6 \\ 3 \end{pmatrix}$ and $\mathbf{q} = (1, 2, 2, 1)^{\mathsf{T}}$
Then $\mathbf{A}\mathbf{A}^{\mathsf{T}} = \begin{bmatrix} 4 & 0 \\ 0 & 4 \end{bmatrix}$ and $\mathbf{b} - \mathbf{A}\mathbf{q} = \begin{pmatrix} 6 \\ 3 \end{pmatrix} - \begin{pmatrix} 2 \\ 4 \end{pmatrix} = \begin{pmatrix} 4 \\ -1 \end{pmatrix}$,

so that the dual objective function becomes $\varphi(\mathbf{y}) = -2y_1^2 - 2y_2^2 + 4y_1 - y_2$.

Alternative calculation of the dual function, without using the results from (a):

The considered problem is: minimize $f(\mathbf{x})$ subject to $g_1(\mathbf{x}) \le 0$ and $g_2(\mathbf{x}) \le 0$, where $f(\mathbf{x}) = \frac{1}{2} (x_1 - 1)^2 + \frac{1}{2} (x_2 - 2)^2 + \frac{1}{2} (x_2 - 2)^2 + \frac{1}{2} (x_4 - 1)^2$

where $f(\mathbf{x}) = \frac{1}{2} (x_1 - 1)^2 + \frac{1}{2} (x_2 - 2)^2 + \frac{1}{2} (x_3 - 2)^2 + \frac{1}{2} (x_4 - 1)^2,$ $g_1(\mathbf{x}) = 6 - x_1 - x_2 + x_3 - x_4$ and $g_2(\mathbf{x}) = 3 - x_1 - x_2 - x_3 + x_4.$

The Lagrange function then becomes:

$$L(\mathbf{x}, \mathbf{y}) = \frac{1}{2} (x_1 - 1)^2 + \frac{1}{2} (x_2 - 2)^2 + \frac{1}{2} (x_3 - 2)^2 + \frac{1}{2} (x_4 - 1)^2 + y_1 (6 - x_1 - x_2 + x_3 - x_4) + y_2 (3 - x_1 - x_2 - x_3 + x_4) = \frac{1}{2} (x_1 - 1)^2 - (y_1 + y_2) x_1 + \frac{1}{2} (x_2 - 2)^2 - (y_1 + y_2) x_2 + \frac{1}{2} (x_3 - 2)^2 - (y_2 - y_1) x_3 + \frac{1}{2} (x_4 - 1)^2 - (y_1 - y_2) x_4 + 6y_1 + 3y_2$$

Minimizing this with respect to \mathbf{x} gives:

$$\tilde{x}_{1}(\mathbf{y}) = 1 + y_{1} + y_{2}, \quad \tilde{x}_{2}(\mathbf{y}) = 2 + y_{1} + y_{2}, \quad \tilde{x}_{3}(\mathbf{y}) = 2 + y_{2} - y_{1}, \quad \tilde{x}_{4}(\mathbf{y}) = 1 + y_{1} - y_{2},$$

so that $\tilde{\mathbf{x}}(\mathbf{y}) = (1 + y_{1} + y_{2}, \ 2 + y_{1} + y_{2}, \ 2 + y_{2} - y_{1}, \ 1 + y_{1} - y_{2})^{\mathsf{T}},$
and then the dual function becomes $\varphi(\mathbf{y}) = L(\tilde{\mathbf{x}}(\mathbf{y}), \mathbf{y}) =$
 $\frac{1}{2} (\tilde{x}(\mathbf{y})_{1} - 1)^{2} - (y_{1} + y_{2}) \tilde{x}(\mathbf{y})_{1} + \frac{1}{2} (\tilde{x}(\mathbf{y})_{2} - 2)^{2} - (y_{1} + y_{2}) \tilde{x}(\mathbf{y})_{2} +$
 $\frac{1}{2} (\tilde{x}(\mathbf{y})_{3} - 2)^{2} - (y_{2} - y_{1}) \tilde{x}(\mathbf{y})_{3} + \frac{1}{2} (\tilde{x}(\mathbf{y})_{4} - 1)^{2} - (y_{1} - y_{2}) \tilde{x}(\mathbf{y})_{4} + 6y_{1} + 3y_{2} =$
 $\frac{1}{2} (y_{1} + y_{2})^{2} - (y_{1} + y_{2}) - (y_{1} + y_{2})^{2} + \frac{1}{2} (y_{1} + y_{2})^{2} - 2(y_{1} + y_{2}) - (y_{1} + y_{2})^{2} + \frac{1}{2} (y_{2} - y_{2})^{2} - 2(y_{2} - y_{1}) - (y_{2} - y_{1})^{2} + \frac{1}{2} (y_{1} - y_{2})^{2} - (y_{1} - y_{2}) - (y_{1} - y_{2})^{2} + \frac{6y_{1}}{3} + 3y_{2} = \dots = -2y_{1}^{2} - 2y_{2}^{2} + 4y_{1} - y_{2}, \text{ as above.}$

The dual problem then becomes:

D: maximize $\varphi(\mathbf{y}) = -2y_1^2 - 2y_2^2 + 4y_1 - y_2$ subject to $y_1 \ge 0$ and $y_2 \ge 0$, which decomposes into the two separate problems

D₁: maximize $-2y_1^2 + 4y_1$ subject to $y_1 \ge 0$, and

D₂: maximize
$$-2y_2^2 - y_2$$
 subject to $y_2 \ge 0$.

Clearly, the optimal solution to the first problem is $\hat{y}_1 = 1$, while the optimal solution to the second problem is $\hat{y}_2 = 0$.

Thus, $\hat{\mathbf{y}} = (1,0)^{\mathsf{T}}$ is the unique optimal solution to D, with $\varphi(\hat{\mathbf{y}}) = 2$.

4.(c) Let $\hat{\mathbf{x}} = \tilde{\mathbf{x}}(\hat{\mathbf{y}}) = (1 + \hat{y}_1 + \hat{y}_2, \ 2 + \hat{y}_1 + \hat{y}_2, \ 2 + \hat{y}_2 - \hat{y}_1, \ 1 + \hat{y}_1 - \hat{y}_2)^{\mathsf{T}} = (2, 3, 1, 2)^{\mathsf{T}}.$ Then $\mathbf{A}\mathbf{\hat{x}} - \mathbf{b} = (6,4)^{\mathsf{T}} - (6,3)^{\mathsf{T}} \ge \mathbf{0}$, so $\mathbf{\hat{x}}$ is a feasible solution to the primal problem. Further, the primal objective value is $f(\hat{\mathbf{x}}) = \frac{1}{2} (\hat{\mathbf{x}} - \mathbf{q})^{\mathsf{T}} (\hat{\mathbf{x}} - \mathbf{q}) = \frac{1}{2} ||(1, 1, -1, 1)^{\mathsf{T}}||^2 = 2.$ Since $\hat{\mathbf{x}}$ is feasible to P and $f(\hat{\mathbf{x}}) = \varphi(\hat{\mathbf{y}})$, we conclude that $\hat{\mathbf{x}}$ is an optimal solution to P.

4.(d) Since
$$\nabla f(\mathbf{x})^{\mathsf{T}} = \begin{pmatrix} x_1 - 1 \\ x_2 - 2 \\ x_3 - 2 \\ x_4 - 1 \end{pmatrix}, \ \nabla g_1(\mathbf{x})^{\mathsf{T}} = \begin{pmatrix} -1 \\ -1 \\ 1 \\ -1 \end{pmatrix}, \ \nabla g_2(\mathbf{x})^{\mathsf{T}} = \begin{pmatrix} -1 \\ -1 \\ -1 \\ 1 \\ 1 \end{pmatrix},$$

the KKT conditions become:
(KKT-1):
$$\begin{pmatrix} x_1 - 1 \\ x_2 - 2 \\ x_3 - 2 \\ x_4 - 1 \end{pmatrix} + y_1 \cdot \begin{pmatrix} -1 \\ -1 \\ 1 \\ -1 \end{pmatrix} + y_2 \cdot \begin{pmatrix} -1 \\ -1 \\ -1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}.$$

(KKT-2): $6 - x_1 - x_2 + x_3 - x_4 \le 0$ and $3 - x_1 - x_2 - x_3 + x_4 \le 0$.

(KKT-3): $y_1 \ge 0$ and $y_2 \ge 0$.

(KKT-4): $y_1(6 - x_1 - x_2 + x_3 - x_4) = 0$ and $y_2(3 - x_1 - x_2 - x_3 + x_4) = 0$.

With $\mathbf{x} = \hat{\mathbf{x}} = (2, 3, 1, 2)^{\mathsf{T}}$ and $\mathbf{y} = \hat{\mathbf{y}} = (1, 0)^{\mathsf{T}}$, we get that

(KKT-1):
$$\begin{pmatrix} 2-1\\ 3-2\\ 1-2\\ 2-1 \end{pmatrix} + 1 \cdot \begin{pmatrix} -1\\ -1\\ 1\\ -1 \end{pmatrix} + 0 \cdot \begin{pmatrix} -1\\ -1\\ -1\\ 1 \end{pmatrix} = \begin{pmatrix} 0\\ 0\\ 0\\ 0 \end{pmatrix}$$
. OK!

(KKT-2): $6-2-3+1-2=0 \le 0$ and $3-2-3-1+2=-1 \le 0$. OK!

(KKT-3): $1 \ge 0$ and $0 \ge 0$. OK!

(KKT-4): $1 \cdot 0 = 0$ and $0 \cdot (-1) = 0$. OK!

Thus, $\hat{\mathbf{x}}$ and $\hat{\mathbf{y}}$ satisfy the KKT conditions, and since the considered problem is a convex problem, we can conclude (again) that $\hat{\mathbf{x}}$ is a global optimal solution.

5.(a)

Change notation and let the variable vector be called \mathbf{x} , i.e.

$$\mathbf{x} = (x_1, x_2, x_3)^{\mathsf{T}} = (x, y, r)^{\mathsf{T}}.$$

Then $f(\mathbf{x}) = \frac{1}{2} \sum_{i=1}^{m} h_i(\mathbf{x})^2 = \frac{1}{2} \mathbf{h}(\mathbf{x})^{\mathsf{T}} \mathbf{h}(\mathbf{x})$, where
 $h_i(\mathbf{x}) = \sqrt{(x_1 - a_i)^2 + (x_2 - b_i)^2} - x_3$ and $\mathbf{h}(\mathbf{x}) = (h_1(\mathbf{x}), \dots, h_m(\mathbf{x}))^{\mathsf{T}}$
The gradient of h_i is given by

$$\nabla h_i(\mathbf{x}) = \left(\frac{x_1 - a_i}{\sqrt{(x_1 - a_i)^2 + (x_2 - b_i)^2}}, \frac{x_2 - b_i}{\sqrt{(x_1 - a_i)^2 + (x_2 - b_i)^2}}, -1\right),$$

and $\nabla \mathbf{h}(\mathbf{x})$ is the $m \times 3$ matrix with these gradients as rows. With the given data, we get that $f(\mathbf{x}) = \frac{1}{2}(h_1(\mathbf{x})^2 + h_2(\mathbf{x})^2 + h_3(\mathbf{x})^2 + h_4(\mathbf{x})^2)$, where

$$h_1(\mathbf{x}) = \sqrt{(x_1 - 5)^2 + x_2^2} - x_3,$$

$$h_2(\mathbf{x}) = \sqrt{x_1^2 + (x_2 - 6)^2} - x_3,$$

$$h_3(\mathbf{x}) = \sqrt{(x_1 + 4)^2 + x_2^2} - x_3,$$

$$h_4(\mathbf{x}) = \sqrt{x_1^2 + (x_2 + 5)^2} - x_3.$$

The starting point should be $\mathbf{x}^{(1)} = (0, 0, 5)^{\mathsf{T}}$. and then

$$\mathbf{h}(\mathbf{x}^{(1)}) = \begin{pmatrix} 0\\1\\-1\\0 \end{pmatrix}, \ f(\mathbf{x}^{(1)}) = 1 \text{ and } \nabla \mathbf{h}(\mathbf{x}^{(1)}) = \begin{bmatrix} -1 & 0 & -1\\0 & -1 & -1\\1 & 0 & -1\\0 & 1 & -1 \end{bmatrix}.$$

In Gauss-Newtons method, we should solve $\nabla \mathbf{h}(\mathbf{x}^{(1)})^{\mathsf{T}} \nabla \mathbf{h}(\mathbf{x}^{(1)}) \mathbf{d} = -\nabla \mathbf{h}(\mathbf{x}^{(1)})^{\mathsf{T}} \mathbf{h}(\mathbf{x}^{(1)})$,

which becomes
$$\begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 4 \end{bmatrix} \begin{pmatrix} d_1 \\ d_2 \\ d_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$
, with the solution $\mathbf{d}^{(1)} = \begin{pmatrix} 0.5 \\ 0.5 \\ 0 \end{pmatrix}$.

We try $t_1 = 1$, so that $\mathbf{x}^{(2)} = \mathbf{x}^{(1)} + t_1 \mathbf{d}^{(1)} = \mathbf{x}^{(1)} + \mathbf{d}^{(1)} = (0.5, 0.5, 5)^{\mathsf{T}}$. Then $\mathbf{h}(\mathbf{x}^{(2)}) = (\sqrt{4.5^2 + 0.5^2} - 5, \sqrt{5.5^2 + 0.5^2} - 5, \sqrt{4.5^2 + 0.5^2} - 5, \sqrt{5.5^2 + 0.5^2} - 5)^{\mathsf{T}} = \frac{1}{2}(\sqrt{82} - 10, \sqrt{122} - 10, \sqrt{82} - 10, \sqrt{122} - 10)^{\mathsf{T}} \approx \frac{1}{2}(-1, 1, -1, 1)^{\mathsf{T}}$, so that $f(\mathbf{x}^{(2)}) = \frac{1}{2}\mathbf{h}(\mathbf{x}^{(2)})^{\mathsf{T}}\mathbf{h}(\mathbf{x}^{(2)}) \approx \frac{1}{8}(1 + 1 + 1 + 1) = \frac{1}{2} < 1 = f(\mathbf{x}^{(1)})$,

Thus, the choice $t_1 = 1$ is accepted, and $\mathbf{x}^{(2)} = (0.5, 0.5, 5)^{\mathsf{T}}$ is the next iteration point.

5.(b) Let (x_1, x_2) = the location of the (common) center of C_1 and C_2 , z_1 = the square of the radius of the small circle C_1 , and z_2 = the square of the radius of the large circle C_2 .

Then the problem can be formulated as follows in the variables are x_1, x_2, z_1 and z_2 :

minimize
$$\pi z_2 - \pi z_1$$

subject to $(x_1 - a_i)^2 + (x_2 - b_i)^2 - z_1 \ge 0, \quad i = 1, \dots, m,$
 $(x_1 - a_i)^2 + (x_2 - b_i)^2 - z_2 \le 0, \quad i = 1, \dots, m.$

5.(c) For each given point $(x_1, x_2)^{\mathsf{T}} \in \mathbb{R}^2$, the corresponding optimal values of z_1 and z_2 in the above problem are clearly

$$\hat{z}_1(x_1, x_2) = \min_i \{ (x_1 - a_i)^2 + (x_2 - b_i)^2 \}$$
 and
 $\hat{z}_1(x_1, x_2) = \max_i \{ (x_1 - a_i)^2 + (x_2 - b_i)^2 \}.$

Thus, the above problem can be written

minimize
$$\pi \max_{i} \{ (x_1 - a_i)^2 + (x_2 - b_i)^2 \} - \pi \min_{i} \{ (x_1 - a_i)^2 + (x_2 - b_i)^2 \},\$$

which is a problem in just the two variables x_1 and x_2 .

(However, the objective function is not differentiable, so this is not a correct answer to 5.(b).)

But
$$\min_{i} \{(x_{1} - a_{i})^{2} + (x_{2} - b_{i})^{2}\} = \min_{i} \{x_{1}^{2} - 2a_{i}x_{1} + a_{i}^{2} + x_{2}^{2} - 2b_{i}x_{2} + b_{i}^{2}\} = x_{1}^{2} + x_{2}^{2} + \min_{i} \{-2a_{i}x_{1} + a_{i}^{2} - 2b_{i}x_{2} + b_{i}^{2}\}, \text{ and}$$

 $\max_{i} \{(x_{1} - a_{i})^{2} + (x_{2} - b_{i})^{2}\} = \max_{i} \{x_{1}^{2} - 2a_{i}x_{1} + a_{i}^{2} + x_{2}^{2} - 2b_{i}x_{2} + b_{i}^{2}\} = x_{1}^{2} + x_{2}^{2} + \max_{i} \{-2a_{i}x_{1} + a_{i}^{2} - 2b_{i}x_{2} + b_{i}^{2}\}.$

Therefore, $\max_{i} \{ (x_1 - a_i)^2 + (x_2 - b_i)^2 \} - \min_{i} \{ (x_1 - a_i)^2 + (x_2 - b_i)^2 \} = \max_{i} \{ -2a_i x_1 + a_i^2 - 2b_i x_2 + b_i^2 \} - \min_{i} \{ -2a_i x_1 + a_i^2 - 2b_i x_2 + b_i^2 \},$

so the above problem can be written

minimize
$$\pi \max_{i} \{-2a_{i}x_{1} + a_{i}^{2} - 2b_{i}x_{2} + b_{i}^{2}\} - \pi \min_{i} \{-2a_{i}x_{1} + a_{i}^{2} - 2b_{i}x_{2} + b_{i}^{2}\},\$$

which may equivalently be written

minimize
$$\pi w_2 - \pi w_1$$

subject to $w_1 + 2a_ix_1 + 2b_ix_2 \leq a_i^2 + b_i^2$, $i = 1, \dots, m_i$
 $w_2 + 2a_ix_1 + 2b_ix_2 \geq a_i^2 + b_i^2$, $i = 1, \dots, m_i$

which is an LP problem in the variables x_1, x_2, w_1 and w_2 .