Solutions to exam in SF1811 Optimization, Jan 14, 2015

1.(a) Let $\mathbf{x}=\left(x_{13}, x_{14}, x_{23}, x_{24}\right)^{\top}$, where the variable $x_{i j}$ stands for the flow in the link from node i to node j, and let $\mathbf{c}=\left(c_{13}, c_{14}, c_{23}, c_{24}\right)^{\top}$. Then the total cost for the flow is given by $\mathbf{c}^{\top} \mathbf{x}$.
The flow balance conditions in the nodes can be written $\mathbf{A x}=\mathbf{b}$, where
$\mathbf{A}=\left[\begin{array}{rrrr}1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ -1 & 0 & -1 & 0 \\ 0 & -1 & 0 & -1\end{array}\right]$ and $\mathbf{b}=\left(\begin{array}{r}300 \\ 600 \\ -400 \\ -500\end{array}\right)$.
Finally, the given directions of the links imply the constraints $\mathbf{x} \geq \mathbf{0}$.
(It is recommended to remove the last row in \mathbf{A} and the corresponding last component in \mathbf{b} to get a system without any redundant equation.)
1.(b) The four different spanning trees are shown in the following figure, together wih the unique link flows which satisfy $\mathbf{A x}=\mathbf{b}$.

The link flows in the first spanning tree are calculated as follows:
The only way to satisfy the supply constraint in node 2 is to let $x_{23}=600$.
Then the only way to satisfy the demand constraint in node 3 is to let $x_{13}=-200$.
Then the only way to satisfy the supply constraint in node 1 is to let $x_{14}=500$.
Then the demand constraint in node 4 is also satisfied.

The link flows for the other spanning trees are calculated in a similar way.
We thus have the following four basic solutions:
$\mathbf{x}=(-200,500,600,0)^{\top}$, corresponding to spanning tree number 1 ,
$\mathbf{x}=(400,-100,0,600)^{\top}$, corresponding to spanning tree number 2 ,
$\mathbf{x}=(300,0,100,500)^{\top}$, corresponding to spanning tree number 3 , and
$\mathbf{x}=(0,300,400,200)^{\top}$, corresponding to spanning tree number 4 .
All these four solutions satisfy $\mathbf{A x}=\mathbf{b}$, but only the last two satisfy $\mathbf{x} \geq \mathbf{0}$.
Thus, the basic solutions corresponding to spanning trees 3 and 4 are feasible basic solutions, while the basic solutions corresponding to spanning trees 1 and 2 are infeasible basic solutions.
1.(c) For a given feasible basic solution, the simplex multipliers y_{i} for the different nodes are calculated from $y_{4}=0$ and $y_{i}-y_{j}=c_{i j}$ for all links (i, j) in the corresponding spanning tree.
For the feasible basic solution corresponding to spanning tree 3 , we get
$y_{4}=0$,
$y_{2}=y_{4}+c_{24}=c_{24}$,
$y_{3}=y_{2}-c_{23}=c_{24}-c_{23}$,
$y_{1}=y_{3}+c_{13}=c_{24}-c_{23}+c_{13}$.
The reduced cost for the only non-basic variable is then given by
$r_{14}=c_{14}-y_{1}+y_{4}=c_{14}-c_{24}+c_{23}-c_{13}$.
Thus, if $c_{13}-c_{14}-c_{23}+c_{24}<0$ then $r_{14}>0$, and then $\mathbf{x}=(300,0,100,500)^{\top}$
is the unique optimal solution to the considered problem.
For the feasible basic solution corresponding to spanning tree 4 , we get
$y_{4}=0$,
$y_{2}=y_{4}+c_{24}=c_{24}$,
$y_{1}=y_{4}+c_{14}=c_{14}$,
$y_{3}=y_{2}-c_{23}=c_{24}-c_{23}$,
The reduced cost for the only non-basic variable is then given by
$r_{13}=c_{13}-y_{1}+y_{3}=c_{13}-c_{14}+c_{24}-c_{23}$.
Thus, if $c_{13}-c_{14}-c_{23}+c_{24}>0$ then $r_{13}>0$, and then $\mathbf{x}=(0,300,400,200)^{\top}$ is the unique optimal solution to the considered problem.
If $c_{13}-c_{14}-c_{23}+c_{24}=0$ then both the above feasible basic solutions are optimal solutions, and then every convex combination of these two solutions, i.e. $\mathbf{x}=t(300,0,100,500)^{\top}+(1-t)(0,300,400,200)^{\top}$, where $t \in[0,1]$,
is also an optimal solution since the constraints and the objective function are linear. As an example, the following three solutions (corresponding to $t=1 / 3,1 / 2$ and $2 / 3$) are optimal solutions for the case that $c_{13}-c_{14}-c_{23}+c_{24}=0$:
$\mathbf{x}=(100,200,300,300)^{\top}, \mathbf{x}=(150,150,250,350)^{\top}$ and $\mathbf{x}=(200,100,200,400)^{\top}$.
2.(a) We have an LP problem on the standard form

$$
\begin{aligned}
\operatorname{minimera} & \mathbf{c}^{\top} \mathbf{x} \\
\text { då } & \mathbf{A x}=\mathbf{b} \\
& \mathbf{x} \geq \mathbf{0}
\end{aligned}
$$

where $\mathbf{A}=\left[\begin{array}{lllll}0 & 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 & 0\end{array}\right], \quad \mathbf{b}=\binom{8}{4}$ and $\mathbf{c}^{\top}=(4,4,2,4,4)$.
The starting solution should have the basic variables x_{1} and x_{5}, which means that $\beta=(1,5)$ and $\nu=(2,3,4)$.
The corresponding basic matrix is $\mathbf{A}_{\beta}=\left[\begin{array}{ll}0 & 4 \\ 4 & 0\end{array}\right]$, while $\mathbf{A}_{\nu}=\left[\begin{array}{lll}1 & 2 & 3 \\ 3 & 2 & 1\end{array}\right]$.
The values of the current basic variables are given by $\mathbf{x}_{\beta}=\overline{\mathbf{b}}$, where the vector $\overline{\mathbf{b}}$ is calculated from the system $\mathbf{A}_{\beta} \overline{\mathbf{b}}=\mathbf{b}$, i.e.

$$
\left[\begin{array}{ll}
0 & 4 \\
4 & 0
\end{array}\right]\binom{\bar{b}_{1}}{\bar{b}_{2}}=\binom{8}{4} \text {, with the solution } \overline{\mathbf{b}}=\binom{\bar{b}_{1}}{\bar{b}_{2}}=\binom{1}{2} .
$$

The vector \mathbf{y} with simplex multipliers is obtained by the system $\mathbf{A}_{\beta}^{\top} \mathbf{y}=\mathbf{c}_{\beta}$, i.e.

$$
\left[\begin{array}{ll}
0 & 4 \\
4 & 0
\end{array}\right]\binom{y_{1}}{y_{2}}=\binom{4}{4} \text {, with the solution } \mathbf{y}=\binom{y_{1}}{y_{2}}=\binom{1}{1} .
$$

Then the reduced costs for the non-basic variables are obtained from
$\mathbf{r}_{\nu}^{\top}=\mathbf{c}_{\nu}^{\top}-\mathbf{y}^{\top} \mathbf{A}_{\nu}=(4,2,4)-(1,1)\left[\begin{array}{lll}1 & 2 & 3 \\ 3 & 2 & 1\end{array}\right]=(0,-2,0)$.
Since $r_{\nu_{2}}=r_{3}=-2$ is smallest, and <0, we let x_{3} become the new basic variable.
Then we should calculate the vector $\overline{\mathbf{a}}_{3}$ from the system $\mathbf{A}_{\beta} \overline{\mathbf{a}}_{3}=\mathbf{a}_{3}$, i.e.

$$
\left[\begin{array}{ll}
0 & 4 \\
4 & 0
\end{array}\right]\binom{\bar{a}_{13}}{\bar{a}_{23}}=\binom{2}{2} \text {, with the solution } \overline{\mathbf{a}}_{3}=\binom{\bar{a}_{13}}{\bar{a}_{23}}=\binom{0.5}{0.5} .
$$

The largest permitted value of the new basic variable x_{3} is then given by

$$
t^{\max }=\min _{i}\left\{\left.\frac{\bar{b}_{i}}{\bar{a}_{i 3}} \right\rvert\, \bar{a}_{i 3}>0\right\}=\min \left\{\frac{1}{0.5}, \frac{2}{0.5}\right\}=\frac{1}{0.5}=\frac{\bar{b}_{1}}{\bar{a}_{13}} .
$$

Minimizing index is $i=1$, which implies that $x_{\beta_{1}}=x_{1}$ should no longer be a basic variable. Its place as basic variable is taken by x_{3}, so that $\beta=(3,5)$ and $\nu=(2,1,4)$.
The corresponding basic matrix is $\mathbf{A}_{\beta}=\left[\begin{array}{ll}2 & 4 \\ 2 & 0\end{array}\right]$, while $\mathbf{A}_{\nu}=\left[\begin{array}{lll}1 & 0 & 3 \\ 3 & 4 & 1\end{array}\right]$.
The values of the current basic variables are $\mathbf{x}_{\beta}=\overline{\mathbf{b}}$, where the vector $\overline{\mathbf{b}}$ is calculated from the system $\mathbf{A}_{\beta} \overline{\mathbf{b}}=\mathbf{b}$, i.e.

$$
\left[\begin{array}{ll}
2 & 4 \\
2 & 0
\end{array}\right]\binom{\bar{b}_{1}}{\bar{b}_{2}}=\binom{8}{4} \text {, with the solution } \overline{\mathbf{b}}=\binom{\bar{b}_{1}}{\bar{b}_{2}}=\binom{2}{1} .
$$

The vector \mathbf{y} with simplex multipliers is obtained from the system $\mathbf{A}_{\beta}^{\top} \mathbf{y}=\mathbf{c}$, i.e.

$$
\left[\begin{array}{ll}
2 & 2 \\
4 & 0
\end{array}\right]\binom{y_{1}}{y_{2}}=\binom{2}{4}, \text { with the solution } \mathbf{y}=\binom{y_{1}}{y_{2}}=\binom{1}{0}
$$

Then the reduced costs for the non-basic variables are obtained from
$\mathbf{r}_{\nu}^{\top}=\mathbf{c}_{\nu}^{\top}-\mathbf{y}^{\top} \mathbf{A}_{\nu}=(4,4,4)-(1,0)\left[\begin{array}{lll}1 & 0 & 3 \\ 3 & 4 & 1\end{array}\right]=(3,4,1)$.
Since $\mathbf{r}_{\nu} \geq \mathbf{0}$ the current feasible basic solution is optimal.
Thus, $\mathbf{x}=(0,0,2,0,1)^{\top}$ is an optimal solution, with optimal value $\mathbf{c}^{\top} \mathbf{x}=8$.
2.(b) If the primal problem is on the standard form

$$
\begin{aligned}
\operatorname{minimize} & \mathbf{c}^{\top} \mathbf{x} \\
\text { subject to } & \mathbf{A} \mathbf{x}=\mathbf{b} \\
& \mathbf{x} \geq \mathbf{0}
\end{aligned}
$$

the corresponding dual problem is: maximize $\mathbf{b}^{\top} \mathbf{y}$ subject to $\mathbf{A}^{\top} \mathbf{y} \leq \mathbf{c}$, which becomes

$$
\begin{aligned}
& \text { maximize } 8 y_{1}+4 y_{2} \\
& \begin{aligned}
& \text { subject to } 4 y_{2} \leq 4, \\
& y_{1}+3 y_{2} \leq 4,
\end{aligned} \\
& 2 y_{1}+2 y_{2} \leq 2 \text {, } \\
& \begin{aligned}
3 y_{1}+y_{2} & \leq 4, \\
4 y_{1} & \leq 4 .
\end{aligned}
\end{aligned}
$$

This dual problem can be illustrated by drawing the constraints and some level lines for the objective function in a coordinate system with y_{1} and y_{2} on the axes.
(The figure is omitted here.)
It is well known that an optimal solution to this problem is given by the vector \mathbf{y} of "simplex multipliers" for the optimal basic solution in (a) above, i.e. $\mathbf{y}=(1,0)^{\top}$. Alternatively, this can be seen from the figure (which is omitted here).

Check: It is easy to verify that $\mathbf{y}=(1,0)^{\top}$ satisfies the dual constraints, with dual objective value $8 y_{1}+4 y_{2}=8=$ the optimal value of the primal problem. Thus, $\mathbf{y}=(1,0)^{\top}$ is an optimal solution to the dual problem.

2.(c)

If the second constraint in the primal problem is removed, the corresponding dual problem becomes

The optimal solution to this problem is clearly $y=1$, with the optimal value $8 y=8$. But then the optimal value of the reduced primal problem must also be $=8$.
Since the optimal solution $\mathbf{x}=(0,0,2,0,1)^{\top}$ from (a) above is feasible also to the reduced primal problem, and still has the objective value $\mathbf{c}^{\top} \mathbf{x}=8$, it follows that $\mathbf{x}=(0,0,2,0,1)^{\top}$ is an optimal solution also to the reduced primal problem!
(But not a basic solution. Two optimal basic solutions are now $\mathbf{x}=(0,0,4,0,0)^{\top}$ and $\mathbf{x}=(0,0,0,0,2)^{\top}$, with objective values $=8$.)

2.(d)

If the first constraint in the primal problem is removed, the corresponding dual problem becomes

$$
\begin{aligned}
\operatorname{maximize} & 4 y \\
\text { subject to } & 4 y \leq 4, \\
& 3 y \leq 4, \\
& 2 y \leq 2, \\
& y \leq 4, \\
& 0 y \leq 4
\end{aligned}
$$

The optimal solution to this problem is clearly $y=1$, with the optimal value $4 y=4$, and then the optimal value of the reduced primal problem must also be $=4$.
But the optimal solution $\mathbf{x}=(0,0,2,0,1)^{\top}$ from (a) above still has the objective value $\mathbf{c}^{\top} \mathbf{x}=8>4$, so it can not be an optimal solution to the reduced primal problem! (Two optimal basic solutions are now $\mathbf{x}=(0,0,2,0,0)^{\top}$ and $\mathbf{x}=(1,0,0,0,0)^{\top}$, with objective values $=4$.)

3.(a)

The objective function is $f(\mathbf{x})=\frac{1}{2} \mathbf{x}^{\top} \mathbf{H} \mathbf{x}+\mathbf{c}^{\top} \mathbf{x}$, with $\mathbf{H}=\left[\begin{array}{rrr}1 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 1\end{array}\right], \mathbf{c}=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$.
LDL^{\top}-factorization of \mathbf{H} gives

$$
\mathbf{H}=\mathbf{L D L}^{\top}=\left[\begin{array}{rrr}
1 & 0 & 0 \\
-1 & 1 & 0 \\
-1 & -2 & 1
\end{array}\right]\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -4
\end{array}\right]\left[\begin{array}{rrr}
1 & -1 & -1 \\
0 & 1 & -2 \\
0 & 0 & 1
\end{array}\right]
$$

Since there is a negative diagonal element in \mathbf{D}, the matrix \mathbf{H} is not positive semidefinite, which in turn implies that there is no optimal solution to the problemen of minimizing $f(\mathbf{x})$ without constraints. (With e.g. $\mathbf{d}=(1,1,1)^{\top}, f(t \mathbf{d})=-t^{2} \rightarrow-\infty$ when $t \rightarrow \infty$.)
3.(b)

We now have a QP problem with equality constraints, i.e. a problem of the form $\operatorname{minimize} \frac{1}{2} \mathbf{x}^{\top} \mathbf{H} \mathbf{x}+\mathbf{c}^{\top} \mathbf{x}$ subject to $\mathbf{A} \mathbf{x}=\mathbf{b}$, with \mathbf{H} and \mathbf{c} as above, $\mathbf{A}=\left[\begin{array}{lll}1 & -1 & 1\end{array}\right]$ and $\mathbf{b}=0$.

The general solution to $\mathbf{A x}=\mathbf{b}$, i.e. to $x_{1}-x_{2}+x_{3}=0$, is given by
$\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)+\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right) \cdot v_{1}+\left(\begin{array}{r}-1 \\ 0 \\ 1\end{array}\right) \cdot v_{2}$, for arbitrary values on v_{1} and v_{2},
which means that $\overline{\mathbf{x}}=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$ is a feasible solution, and $\mathbf{Z}=\left[\begin{array}{rr}1 & -1 \\ 1 & 0 \\ 0 & 1\end{array}\right]$ is a matrix
whos columns form a basis for the null space of \mathbf{A}.
After the variable change $\mathbf{x}=\overline{\mathbf{x}}+\mathbf{Z} \mathbf{v}$ we should solve the system $\left(\mathbf{Z}^{\top} \mathbf{H Z}\right) \mathbf{v}=-\mathbf{Z}^{\top}(\mathbf{H} \overline{\mathbf{x}}+\mathbf{c})$, provided that $\mathbf{Z}^{\top} \mathbf{H Z}$ is at least positive semidefinite.
We have that $\mathbf{Z}^{\top} \mathbf{H Z}=\left[\begin{array}{rr}1 & -2 \\ -2 & 4\end{array}\right]$, which is positive semidefinite (but not positive definite).
The system $\left(\mathbf{Z}^{\top} \mathbf{H Z}\right) \mathbf{v}=-\mathbf{Z}^{\top}(\mathbf{H} \overline{\mathbf{x}}+\mathbf{c})$ becomes $\left[\begin{array}{rr}1 & -2 \\ -2 & 4\end{array}\right]\binom{v_{1}}{v_{2}}=\binom{0}{0}$,
with the solutions $\hat{\mathbf{v}}(t)=\binom{2 t}{t}$, for arbitrary values on the real number t, which implies that $\hat{\mathbf{x}}(t)=\overline{\mathbf{x}}+\mathbf{Z} \hat{\mathbf{v}}(t)=\left(\begin{array}{c}t \\ 2 t \\ t\end{array}\right)$, for $t \in \mathbb{R}$, are the (infinite number of) optimal solutions.
Note that $f(\hat{\mathbf{x}}(t))=0$ for all $t \in \mathbb{R}$.

3.(c)

Again, we have a problem on the form: minimize $\frac{1}{2} \mathbf{x}^{\top} \mathbf{H} \mathbf{x}+\mathbf{c}^{\top} \mathbf{x}$ subject to $\mathbf{A x}=\mathbf{b}$, with \mathbf{H} and \mathbf{c} as above, $\mathbf{A}=\left[\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 1\end{array}\right]$, and $\mathbf{b}=\binom{0}{0}$.
The general solution to $\mathbf{A x}=\mathbf{b}$ is now $\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)=\left(\begin{array}{r}1 \\ -1 \\ 1\end{array}\right) \cdot v$, for $v \in \mathbb{R}$, which implies that $\overline{\mathbf{x}}=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$ is a feasible solution, and $\mathbf{z}=\left(\begin{array}{r}1 \\ -1 \\ 1\end{array}\right)$ form a basis for the null space of \mathbf{A}.
After the variable change $\mathbf{x}=\overline{\mathbf{x}}+\mathbf{z} v$, we should solve the system $\left(\mathbf{z}^{\top} \mathbf{H z}\right) v=-\mathbf{z}^{\top}(\mathbf{H} \overline{\mathbf{x}}+\mathbf{c})$, provided that $\mathbf{z}^{\top} \mathbf{H z}$ is at least ≥ 0.
We have that $\mathbf{z}^{\top} \mathbf{H z}=6>0$, so the system $\left(\mathbf{z}^{\top} \mathbf{H z}\right) v=-\mathbf{z}^{\top}(\mathbf{H} \overline{\mathbf{x}}+\mathbf{c})$ becomes $6 v=0$, with the unique solution $\hat{v}=0$, so that $\hat{\mathbf{x}}=\overline{\mathbf{x}}+\mathbf{z} \hat{v}=\mathbf{0}$ is the unique optimal solution.
4.(a) The Lagrange function for the considered problem is given by
$L(\mathbf{x}, \mathbf{y})=\frac{1}{2}(\mathbf{x}-\mathbf{q})^{\top}(\mathbf{x}-\mathbf{q})+\mathbf{y}^{\top}(\mathbf{b}-\mathbf{A x})$, with $\mathbf{x} \in \mathbb{R}^{n}$ and $y \in \mathbb{R}^{m}$.
The Lagrange relaxed problem $\mathrm{PR}_{\mathbf{y}}$ is defined, for a given $\mathbf{y} \geq \mathbf{0}$, as the problem of minimizing $L(\mathbf{x}, \mathbf{y})$ with respect to $\mathbf{x} \in \mathbb{R}^{n}$.
Since $L(\mathbf{x}, \mathbf{y})=\frac{1}{2} \mathbf{x}^{\top} \mathbf{I} \mathbf{x}-\left(\mathbf{A}^{\top} \mathbf{y}+\mathbf{q}\right)^{\top} \mathbf{x}+\mathbf{b}^{\top} \mathbf{y}+\frac{1}{2} \mathbf{q}^{\top} \mathbf{q}$,
and the unit matrix \mathbf{I} is positive definite, the unique optimal solution to $\mathrm{PR}_{\mathbf{y}}$ is given by $\tilde{\mathbf{x}}(\mathbf{y})=\mathbf{A}^{\top} \mathbf{y}+\mathbf{q}$.
Then the dual objective function becomes

$$
\begin{aligned}
\varphi(\mathbf{y}) & =L(\tilde{\mathbf{x}}(\mathbf{y}), \mathbf{y})=-\frac{1}{2}\left(\mathbf{A}^{\top} \mathbf{y}+\mathbf{q}\right)^{\top}\left(\mathbf{A}^{\top} \mathbf{y}+\mathbf{q}\right)+\mathbf{b}^{\top} \mathbf{y}+\frac{1}{2} \mathbf{q}^{\top} \mathbf{q}= \\
& =-\frac{1}{2} \mathbf{y}^{\top} \mathbf{A} \mathbf{A}^{\top} \mathbf{y}+(\mathbf{b}-\mathbf{A} \mathbf{q})^{\top} \mathbf{y}
\end{aligned}
$$

4.(b) From now on, $\mathbf{A}=\left[\begin{array}{rrrr}1 & 1 & -1 & 1 \\ 1 & 1 & 1 & -1\end{array}\right], \mathbf{b}=\binom{6}{3}$ and $\mathbf{q}=(1,2,2,1)^{\top}$.

Then $\mathbf{A} \mathbf{A}^{\top}=\left[\begin{array}{ll}4 & 0 \\ 0 & 4\end{array}\right]$ and $\mathbf{b}-\mathbf{A q}=\binom{6}{3}-\binom{2}{4}=\binom{4}{-1}$,
so that the dual objective function becomes $\varphi(\mathbf{y})=-2 y_{1}^{2}-2 y_{2}^{2}+4 y_{1}-y_{2}$.
Alternative calculation of the dual function, without using the results from (a):
The considered problem is: minimize $f(\mathbf{x})$ subject to $g_{1}(\mathbf{x}) \leq 0$ and $g_{2}(\mathbf{x}) \leq 0$,
where $f(\mathbf{x})=\frac{1}{2}\left(x_{1}-1\right)^{2}+\frac{1}{2}\left(x_{2}-2\right)^{2}+\frac{1}{2}\left(x_{3}-2\right)^{2}+\frac{1}{2}\left(x_{4}-1\right)^{2}$, $g_{1}(\mathbf{x})=6-x_{1}-x_{2}+x_{3}-x_{4}$ and $g_{2}(\mathbf{x})=3-x_{1}-x_{2}-x_{3}+x_{4}$.

The Lagrange function then becomes:

$$
\begin{aligned}
L(\mathbf{x}, \mathbf{y})= & \frac{1}{2}\left(x_{1}-1\right)^{2}+\frac{1}{2}\left(x_{2}-2\right)^{2}+\frac{1}{2}\left(x_{3}-2\right)^{2}+\frac{1}{2}\left(x_{4}-1\right)^{2}+ \\
& y_{1}\left(6-x_{1}-x_{2}+x_{3}-x_{4}\right)+y_{2}\left(3-x_{1}-x_{2}-x_{3}+x_{4}\right)= \\
= & \frac{1}{2}\left(x_{1}-1\right)^{2}-\left(y_{1}+y_{2}\right) x_{1}+\frac{1}{2}\left(x_{2}-2\right)^{2}-\left(y_{1}+y_{2}\right) x_{2}+ \\
& \frac{1}{2}\left(x_{3}-2\right)^{2}-\left(y_{2}-y_{1}\right) x_{3}+\frac{1}{2}\left(x_{4}-1\right)^{2}-\left(y_{1}-y_{2}\right) x_{4}+6 y_{1}+3 y_{2} .
\end{aligned}
$$

Minimizing this with respect to \mathbf{x} gives:
$\tilde{x}_{1}(\mathbf{y})=1+y_{1}+y_{2}, \quad \tilde{x}_{2}(\mathbf{y})=2+y_{1}+y_{2}, \quad \tilde{x}_{3}(\mathbf{y})=2+y_{2}-y_{1}, \quad \tilde{x}_{4}(\mathbf{y})=1+y_{1}-y_{2}$, so that $\tilde{\mathbf{x}}(\mathbf{y})=\left(1+y_{1}+y_{2}, 2+y_{1}+y_{2}, 2+y_{2}-y_{1}, 1+y_{1}-y_{2}\right)^{\top}$, and then the dual function becomes $\varphi(\mathbf{y})=L(\tilde{\mathbf{x}}(\mathbf{y}), \mathbf{y})=$ $\frac{1}{2}\left(\tilde{x}(\mathbf{y})_{1}-1\right)^{2}-\left(y_{1}+y_{2}\right) \tilde{x}(\mathbf{y})_{1}+\frac{1}{2}\left(\tilde{x}(\mathbf{y})_{2}-2\right)^{2}-\left(y_{1}+y_{2}\right) \tilde{x}(\mathbf{y})_{2}+$
$\frac{1}{2}\left(\tilde{x}(\mathbf{y})_{3}-2\right)^{2}-\left(y_{2}-y_{1}\right) \tilde{x}(\mathbf{y})_{3}+\frac{1}{2}\left(\tilde{x}(\mathbf{y})_{4}-1\right)^{2}-\left(y_{1}-y_{2}\right) \tilde{x}(\mathbf{y})_{4}+6 y_{1}+3 y_{2}=$
$\frac{1}{2}\left(y_{1}+y_{2}\right)^{2}-\left(y_{1}+y_{2}\right)-\left(y_{1}+y_{2}\right)^{2}+\frac{1}{2}\left(y_{1}+y_{2}\right)^{2}-2\left(y_{1}+y_{2}\right)-\left(y_{1}+y_{2}\right)^{2}+$
$\frac{1}{2}\left(y_{2}-y_{2}\right)^{2}-2\left(y_{2}-y_{1}\right)-\left(y_{2}-y_{1}\right)^{2}+\frac{1}{2}\left(y_{1}-y_{2}\right)^{2}-\left(y_{1}-y_{2}\right)-\left(y_{1}-y_{2}\right)^{2}+$
$6 y_{1}+3 y_{2}=\ldots . .=-2 y_{1}^{2}-2 y_{2}^{2}+4 y_{1}-y_{2}$, as above.

The dual problem then becomes:
D: maximize $\varphi(\mathbf{y})=-2 y_{1}^{2}-2 y_{2}^{2}+4 y_{1}-y_{2}$ subject to $y_{1} \geq 0$ and $y_{2} \geq 0$,
which decomposes into the two separate problems
D_{1} : maximize $-2 y_{1}^{2}+4 y_{1}$ subject to $y_{1} \geq 0$, and
D_{2} : maximize $-2 y_{2}^{2}-y_{2}$ subject to $y_{2} \geq 0$.
Clearly, the optimal solution to the first problem is $\hat{y}_{1}=1$, while the optimal solution to the second problem is $\hat{y}_{2}=0$.
Thus, $\hat{\mathbf{y}}=(1,0)^{\top}$ is the unique optimal solution to D , with $\varphi(\hat{\mathbf{y}})=2$.
4.(c) Let $\hat{\mathbf{x}}=\tilde{\mathbf{x}}(\hat{\mathbf{y}})=\left(1+\hat{y}_{1}+\hat{y}_{2}, 2+\hat{y}_{1}+\hat{y}_{2}, 2+\hat{y}_{2}-\hat{y}_{1}, 1+\hat{y}_{1}-\hat{y}_{2}\right)^{\top}=(2,3,1,2)^{\top}$.

Then $\mathbf{A} \hat{\mathbf{x}}-\mathbf{b}=(6,4)^{\top}-(6,3)^{\top} \geq \mathbf{0}$, so $\hat{\mathbf{x}}$ is a feasible solution to the primal problem.
Further, the primal objective value is $f(\hat{\mathbf{x}})=\frac{1}{2}(\hat{\mathbf{x}}-\mathbf{q})^{\top}(\hat{\mathbf{x}}-\mathbf{q})=\frac{1}{2}\left\|(1,1,-1,1)^{\top}\right\|^{2}=2$.
Since $\hat{\mathbf{x}}$ is feasible to P and $f(\hat{\mathbf{x}})=\varphi(\hat{\mathbf{y}})$, we conclude that $\hat{\mathbf{x}}$ is an optimal solution to P .
4.(d) Since $\nabla f(\mathbf{x})^{\top}=\left(\begin{array}{l}x_{1}-1 \\ x_{2}-2 \\ x_{3}-2 \\ x_{4}-1\end{array}\right), \quad \nabla g_{1}(\mathbf{x})^{\top}=\left(\begin{array}{r}-1 \\ -1 \\ 1 \\ -1\end{array}\right), \quad \nabla g_{2}(\mathbf{x})^{\top}=\left(\begin{array}{r}-1 \\ -1 \\ -1 \\ 1\end{array}\right)$,
the KKT conditions become:
(KKT-1): $\left(\begin{array}{l}x_{1}-1 \\ x_{2}-2 \\ x_{3}-2 \\ x_{4}-1\end{array}\right)+y_{1} \cdot\left(\begin{array}{r}-1 \\ -1 \\ 1 \\ -1\end{array}\right)+y_{2} \cdot\left(\begin{array}{r}-1 \\ -1 \\ -1 \\ 1\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right)$.
(KKT-2): $6-x_{1}-x_{2}+x_{3}-x_{4} \leq 0$ and $3-x_{1}-x_{2}-x_{3}+x_{4} \leq 0$.
(KKT-3): $y_{1} \geq 0$ and $y_{2} \geq 0$.
(KKT-4): $y_{1}\left(6-x_{1}-x_{2}+x_{3}-x_{4}\right)=0$ and $y_{2}\left(3-x_{1}-x_{2}-x_{3}+x_{4}\right)=0$.

With $\mathbf{x}=\hat{\mathbf{x}}=(2,3,1,2)^{\top}$ and $\mathbf{y}=\hat{\mathbf{y}}=(1,0)^{\boldsymbol{\top}}$, we get that
(KKT-1): $\left(\begin{array}{l}2-1 \\ 3-2 \\ 1-2 \\ 2-1\end{array}\right)+1 \cdot\left(\begin{array}{r}-1 \\ -1 \\ 1 \\ -1\end{array}\right)+0 \cdot\left(\begin{array}{r}-1 \\ -1 \\ -1 \\ 1\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right) \cdot$ OK!
(KKT-2): $6-2-3+1-2=0 \leq 0$ and $3-2-3-1+2=-1 \leq 0$. OK!
(KKT-3): $1 \geq 0$ and $0 \geq 0$. OK!
(KKT-4): $1 \cdot 0=0$ and $0 \cdot(-1)=0$. OK!
Thus, $\hat{\mathbf{x}}$ and $\hat{\mathbf{y}}$ satisfy the KKT conditions, and since the considered problem is a convex problem, we can conclude (again) that $\hat{\mathbf{x}}$ is a global optimal solution.

5.(a)

Change notation and let the variable vector be called \mathbf{x}, i.e.
$\mathbf{x}=\left(x_{1}, x_{2}, x_{3}\right)^{\top}=(x, y, r)^{\top}$.
Then $f(\mathbf{x})=\frac{1}{2} \sum_{i=1}^{m} h_{i}(\mathbf{x})^{2}=\frac{1}{2} \mathbf{h}(\mathbf{x})^{\top} \mathbf{h}(\mathbf{x})$, where
$h_{i}(\mathbf{x})=\sqrt{\left(x_{1}-a_{i}\right)^{2}+\left(x_{2}-b_{i}\right)^{2}}-x_{3}$ and $\mathbf{h}(\mathbf{x})=\left(h_{1}(\mathbf{x}), \ldots, h_{m}(\mathbf{x})\right)^{\top}$.
The gradient of h_{i} is given by
$\nabla h_{i}(\mathbf{x})=\left(\frac{x_{1}-a_{i}}{\sqrt{\left(x_{1}-a_{i}\right)^{2}+\left(x_{2}-b_{i}\right)^{2}}}, \frac{x_{2}-b_{i}}{\sqrt{\left(x_{1}-a_{i}\right)^{2}+\left(x_{2}-b_{i}\right)^{2}}},-1\right)$,
and $\nabla \mathbf{h}(\mathbf{x})$ is the $m \times 3$ matrix with these gradients as rows.
With the given data, we get that $f(\mathbf{x})=\frac{1}{2}\left(h_{1}(\mathbf{x})^{2}+h_{2}(\mathbf{x})^{2}+h_{3}(\mathbf{x})^{2}+h_{4}(\mathbf{x})^{2}\right)$, where

$$
\begin{aligned}
& h_{1}(\mathbf{x})=\sqrt{\left(x_{1}-5\right)^{2}+x_{2}^{2}}-x_{3}, \\
& h_{2}(\mathbf{x})=\sqrt{x_{1}^{2}+\left(x_{2}-6\right)^{2}}-x_{3}, \\
& h_{3}(\mathbf{x})=\sqrt{\left(x_{1}+4\right)^{2}+x_{2}^{2}}-x_{3}, \\
& h_{4}(\mathbf{x})=\sqrt{x_{1}^{2}+\left(x_{2}+5\right)^{2}}-x_{3} .
\end{aligned}
$$

The starting point should be $\mathbf{x}^{(1)}=(0,0,5)^{\top}$. and then
$\mathbf{h}\left(\mathbf{x}^{(1)}\right)=\left(\begin{array}{r}0 \\ 1 \\ -1 \\ 0\end{array}\right), f\left(\mathbf{x}^{(1)}\right)=1$ and $\nabla \mathbf{h}\left(\mathbf{x}^{(1)}\right)=\left[\begin{array}{rrr}-1 & 0 & -1 \\ 0 & -1 & -1 \\ 1 & 0 & -1 \\ 0 & 1 & -1\end{array}\right]$.
In Gauss-Newtons method, we should solve $\nabla \mathbf{h}\left(\mathbf{x}^{(1)}\right)^{\top} \nabla \mathbf{h}\left(\mathbf{x}^{(1)}\right) \mathbf{d}=-\nabla \mathbf{h}\left(\mathbf{x}^{(1)}\right)^{\top} \mathbf{h}\left(\mathbf{x}^{(1)}\right)$,
which becomes $\left[\begin{array}{lll}2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 4\end{array}\right]\left(\begin{array}{l}d_{1} \\ d_{2} \\ d_{3}\end{array}\right)=\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)$, with the solution $\mathbf{d}^{(1)}=\left(\begin{array}{c}0.5 \\ 0.5 \\ 0\end{array}\right)$.
We try $t_{1}=1$, so that $\mathbf{x}^{(2)}=\mathbf{x}^{(1)}+t_{1} \mathbf{d}^{(1)}=\mathbf{x}^{(1)}+\mathbf{d}^{(1)}=(0.5,0.5,5)^{\top}$. Then

$$
\mathbf{h}\left(\mathbf{x}^{(2)}\right)=\left(\sqrt{4.5^{2}+0.5^{2}}-5, \sqrt{5.5^{2}+0.5^{2}}-5, \sqrt{4.5^{2}+0.5^{2}}-5, \sqrt{5.5^{2}+0.5^{2}}-5\right)^{\top}=
$$

$$
\frac{1}{2}(\sqrt{82}-10, \sqrt{122}-10, \sqrt{82}-10, \sqrt{122}-10)^{\top} \approx \frac{1}{2}(-1,1,-1,1)^{\top}, \text { so that }
$$

$$
f\left(\mathbf{x}^{(2)}\right)=\frac{1}{2} \mathbf{h}\left(\mathbf{x}^{(2)}\right)^{\top} \mathbf{h}\left(\mathbf{x}^{(2)}\right) \approx \frac{1}{8}(1+1+1+1)=\frac{1}{2}<1=f\left(\mathbf{x}^{(1)}\right),
$$

Thus, the choice $t_{1}=1$ is accepted, and $\mathbf{x}^{(2)}=(0.5,0.5,5)^{\top}$ is the next iteration point.
5.(b) Let $\left(x_{1}, x_{2}\right)=$ the location of the (common) center of C_{1} and C_{2}, $z_{1}=$ the square of the radius of the small circle C_{1}, and $z_{2}=$ the square of the radius of the large circle C_{2}.

Then the problem can be formulated as follows in the variables are x_{1}, x_{2}, z_{1} and z_{2} :

$$
\begin{aligned}
\operatorname{minimize} & \pi z_{2}-\pi z_{1} \\
\text { subject to } & \left(x_{1}-a_{i}\right)^{2}+\left(x_{2}-b_{i}\right)^{2}-z_{1} \geq 0, \quad i=1, \ldots, m, \\
& \left(x_{1}-a_{i}\right)^{2}+\left(x_{2}-b_{i}\right)^{2}-z_{2} \leq 0, \quad i=1, \ldots, m .
\end{aligned}
$$

5.(c) For each given point $\left(x_{1}, x_{2}\right)^{\top} \in \mathbb{R}^{2}$, the corresponding optimal values of z_{1} and z_{2} in the above problem are clearly
$\hat{z}_{1}\left(x_{1}, x_{2}\right)=\min _{i}\left\{\left(x_{1}-a_{i}\right)^{2}+\left(x_{2}-b_{i}\right)^{2}\right\}$ and
$\hat{z}_{1}\left(x_{1}, x_{2}\right)=\max _{i}\left\{\left(x_{1}-a_{i}\right)^{2}+\left(x_{2}-b_{i}\right)^{2}\right\}$.
Thus, the above problem can be written

$$
\text { minimize } \pi \max _{i}\left\{\left(x_{1}-a_{i}\right)^{2}+\left(x_{2}-b_{i}\right)^{2}\right\}-\pi \min _{i}\left\{\left(x_{1}-a_{i}\right)^{2}+\left(x_{2}-b_{i}\right)^{2}\right\},
$$

which is a problem in just the two variables x_{1} and x_{2}.
(However, the objective function is not differentiable, so this is not a correct answer to 5.(b).)
But $\min _{i}\left\{\left(x_{1}-a_{i}\right)^{2}+\left(x_{2}-b_{i}\right)^{2}\right\}=\min _{i}\left\{x_{1}^{2}-2 a_{i} x_{1}+a_{i}^{2}+x_{2}^{2}-2 b_{i} x_{2}+b_{i}^{2}\right\}=$
$x_{1}^{2}+x_{2}^{2}+\min \left\{-2 a_{i} x_{1}+a_{i}^{2}-2 b_{i} x_{2}+b_{i}^{2}\right\}$, and
$\max _{i}\left\{\left(x_{1}-a_{i}\right)^{2}+\left(x_{2}-b_{i}\right)^{2}\right\}=\max _{i}\left\{x_{1}^{2}-2 a_{i} x_{1}+a_{i}^{2}+x_{2}^{2}-2 b_{i} x_{2}+b_{i}^{2}\right\}=$
$x_{1}^{2}+x_{2}^{2}+\max _{i}\left\{-2 a_{i} x_{1}+a_{i}^{2}-2 b_{i} x_{2}+b_{i}^{2}\right\}$.
Therefore, $\max _{i}\left\{\left(x_{1}-a_{i}\right)^{2}+\left(x_{2}-b_{i}\right)^{2}\right\}-\min _{i}\left\{\left(x_{1}-a_{i}\right)^{2}+\left(x_{2}-b_{i}\right)^{2}\right\}=$ $\max _{i}\left\{-2 a_{i} x_{1}+a_{i}^{2}-2 b_{i} x_{2}+b_{i}^{2}\right\}-\min _{i}\left\{-2 a_{i} x_{1}+a_{i}^{2}-2 b_{i} x_{2}+b_{i}^{2}\right\}$,
so the above problem can be written

$$
\operatorname{minimize} \pi \max _{i}\left\{-2 a_{i} x_{1}+a_{i}^{2}-2 b_{i} x_{2}+b_{i}^{2}\right\}-\pi \min _{i}\left\{-2 a_{i} x_{1}+a_{i}^{2}-2 b_{i} x_{2}+b_{i}^{2}\right\},
$$

which may equivalently be written

$$
\begin{aligned}
\operatorname{minimize} & \pi w_{2}-\pi w_{1} \\
\text { subject to } & w_{1}+2 a_{i} x_{1}+2 b_{i} x_{2} \leq a_{i}^{2}+b_{i}^{2}, \quad i=1, \ldots, m, \\
& w_{2}+2 a_{i} x_{1}+2 b_{i} x_{2} \geq a_{i}^{2}+b_{i}^{2}, \quad i=1, \ldots, m,
\end{aligned}
$$

which is an LP problem in the variables x_{1}, x_{2}, w_{1} and w_{2}.

