
Solutions to exam in SF1811 Optimization, Jan 13, 2016

1.(a) and 1.(b)
The network corresponding to the given equations Ax = b can be illustrated by the left
figure below, where the supply at the nodes, i.e. the components in the vector b, are written
in the figure. All arcs are directed from left to right. Negative supply means demand.
The spannings tree corresponding to the suggested choice of basic variables is illustrated in
the right figure below, together with the easily calculated values of these basic variables, i.e
the flows in the spanning tree arcs.
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The simplex multipliers yi for the nodes are calculated from y4 = 0 and yi − yj = cij for all
ars (i, j) in the spanning tree (left figure below), whereafter the reduced cost for the (only)
non-basic variable is calculated from rij = cij − yi + yj (right figure below).
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Since r12 < 0, we let x12 = t and let t increase from 0. Then the values of the basic variables
change according to the left figure below. Clearly, t can be increased to at most t = 80, and
then the new basic solution (spanning tree) in the right figure below is obtained.
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Again, the simplex multipliers yi for the nodes are calculated from y4 = 0 and yi − yj = cij
for all ars (i, j) in the spanning tree (left figure below), whereafter the reduced cost for the
(only) non-basic variable is calculated from rij = cij − yi + yj (right figure below).
Since r34 ≥ 0, the current basic solution x = (80, 40, 160, 0)T is optimal !
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1.(c) We now have a QP problem with equality constraints, i.e. a problem of the form

minimize 1
2xTHx + cTx subject to Ax = b,

with A and b as above, c = 0, and H = I = the 4×4 identity matrix.

We use elementary row operations to transform Ax = b to reduced row echelon form:
1 1 0 0 120
−1 0 1 0 80

0 −1 0 1 −40
0 0 −1 −1 −160

 −→ · · · −→


1 0 0 1 80
0 1 0 −1 40
0 0 1 1 160
0 0 0 0 0


(Since it is a balanced network flow problem, it is well known that the last row could have
been removed already from the start, but that does not change the result.)
From this reduced row echelon form, it follows that the general solution to Ax = b is obtained
by letting x34 = v (an arbitrary number), whereafter x12 = 80− v, x13 = 40 + v and
x24 = 160− v. Thus, the complete set of solutions to Ax = b is given by

x =


x12
x13
x24
x34

 =


80
40

160
0

+


−1

1
−1

1

 v = x̄ + z v, for v ∈ IR,

where x̄ is one solution to Ax = b, and z is a basis for the null-space of A.
Changing variables from x to v leads to a quadratic objective function which is
uniquely minimized by the solution v̂ to the system (zTHz) v = −zT(Hx̄ + c),
provided that zTHz is positive definite (> 0 in this one-variable case).

We get that zTHz = zTz = 4 > 0 and −zT(Hx̄ + c) = −zTx̄ = 200,
so the unique solution to the system above is v̂ = 200/4 = 50,
and the unique global optimal solution to the considered QP problem is

x̂ = x̄ + z v̂ =


80
40

160
0

+


−50

50
−50

50

 =


30
90
110
50

.
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2.(a) We have an LP problem on the standard form

minimize cTx

subject to Ax = b ,

x ≥ 0 ,

where A =

[
1 1 −1 −1
1 −1 1 −1

]
, b =

(
3
7

)
and cT = (3, c, c, −1).

There are six different ways to chose two of the four columns in A :

β = (1, 2) with Aβ =

[
1 1
1 −1

]
, β = (1, 3) with Aβ =

[
1 −1
1 1

]
,

β = (1, 4) with Aβ =

[
1 −1
1 −1

]
, β = (2, 3) with Aβ =

[
1 −1
−1 1

]
,

β = (2, 4) with Aβ =

[
1 −1
−1 −1

]
, β = (3, 4) with Aβ =

[
−1 −1

1 −1

]
.

But the matrices Aβ corresponding to β = (1, 4) and β = (2, 3) are singular,
so they are not basic matrices and do not correspond to basic solutions.

For each of the remaining four choices, the values of the basic variables are xβ = b̄,
where the vector b̄ is calculated from the system Aβb̄ = b.
Straight forward calculations give the following:

Aβ =

[
1 1
1 −1

]
⇒ b̄ =

(
5
−2

)
, Aβ =

[
1 −1
1 1

]
⇒ b̄ =

(
5
2

)
,

Aβ =

[
1 −1
−1 −1

]
⇒ b̄ =

(
−2
−5

)
, Aβ =

[
−1 −1

1 −1

]
⇒ b̄ =

(
2
−5

)
.

Thus, there is only one basic feasible solution, namely x = (5, 0, 2, 0)T,
which corresponds to β = (1, 3) and ν = (2, 4).

2.(b) Now cT = (3, 1, 1,−1).

The vector x = (5, 0, 2, 0)T is the basic solution corresponding to

β = (1, 3) and ν = (2, 4) with Aβ =

[
1 −1
1 1

]
, Aν =

[
1 −1
−1 −1

]
and b̄ =

(
5
2

)
.

The vector y with simplex multipliers is obtained from the system AT
βy = cβ, i.e.[

1 1
−1 1

](
y1
y2

)
=

(
3
1

)
, with the solution y =

(
y1
y2

)
=

(
1
2

)
.

Then the reduced costs for the non-basic variables are obtained from

rTν = cTν − yTAν = (1,−1)− (1, 2)

[
1 −1
−1 −1

]
= (2, 2).

For every feasible solution, the objective value may now be expressed as
z = z̄ + rν1xν1 + rν2xν2 = z̄ + r2x2 + r4x4 = 17 + 2x2 + 2x4, which is > 17
for all feasible solutions except for x = (5, 0, 2, 0)T, which has z = z̄ = 17.
Thus, x = (5, 0, 2, 0)T is the unique optimal solution when c = 1.
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2.(c) Now cT = (3,−1,−1,−1).

We start the simplex method from the above BFS, i.e. x = (5, 0, 2, 0)T, corresponding to

β = (1, 3) and ν = (2, 4) with Aβ =

[
1 −1
1 1

]
, Aν =

[
1 −1
−1 −1

]
and b̄ =

(
5
2

)
.

The vector y with simplex multipliers is obtained from the system AT
βy = cβ,

which now become

[
1 1
−1 1

](
y1
y2

)
=

(
3
−1

)
, with the solution y =

(
y1
y2

)
=

(
2
1

)
.

Then the reduced costs for the non-basic variables are obtained from

rTν = cTν − yTAν = (−1,−1)− (2, 1)

[
1 −1
−1 −1

]
= (−2, 2).

Since rν1 = r2 = −2 is smallest, and < 0, we let x2 increase from zero.

Then we should calculate the vector ā2 from the system Aβā2 = a2, i.e.[
1 −1
1 1

](
ā12
ā22

)
=

(
1
−1

)
, with the solution ā2 =

(
ā12
ā22

)
=

(
0
−1

)
.

Since ā2 ≤ 0, the simplex method stops here, with the conclusion that there is
no optimal solution to the problem.

If x2 = t > 0 and x4 = 0, the objective value becomes z = z̄ + r2t = 13− 2t,
while xβ = b̄− ā2t, i.e. x1 = 5 and x3 = 2 + t.

By chosing e.g. t = 1000 we obtain the feasible solution x = (5, 2000, 2002, 0)T

with objective value z = 13− 2000 = −1987 < −1000.

2.(d) Now cT = (3, 0, 0,−1).

As in 2.(c), we start the simplex method from the BFS in 2.(b).

The vector y with simplex multipliers is obtained from the system AT
βy = cβ,

which now become

[
1 1
−1 1

](
y1
y2

)
=

(
3
0

)
, with the solution y =

(
y1
y2

)
=

(
1.5
1.5

)
.

Then the reduced costs for the non-basic variables are obtained from

rTν = cTν − yTAν = (0,−1)− (1.5, 1.5)

[
1 −1
−1 −1

]
= (0, 2).

Since rν ≥ 0, the current basic feasible solution x = (5, 0, 2, 0)T is an optimal solution,
now with optimal value cTx = 15.

But since rν1 = r2 = 0 there may also be other optimal solutions, obtained by increasing
x2 from zero. The vector ā2 is the same as in 2.(c), so if x2 = t > 0 and x4 = 0,
the objective value becomes z = z̄ + r2t = 15 + 0 t = 15 (independent of t),
while xβ = b̄− ā2t, i.e. x1 = 5 and x3 = 2 + t (as in 2.(c)).

The conclusion is that x(t) = (5, t, 2+t, 0)T is an optimal solution for any t ≥ 0,
with the optimal value cTx(t) = 15. Three examples of optimal solutions are
x(0) = (5, 0, 2, 0)T, x(1) = (5, 1, 3, 0)T and x(2) = (5, 2, 4, 0)T.
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2.(e) If the primal problem is on the standard form

minimize cTx
subject to Ax = b,

x ≥ 0,

the corresponding dual problem is: maximize bTy subject to ATy ≤ c,
which becomes

maximize 3y1 + 7y2
subject to y1 + y2 ≤ 3,

y1 − y2 ≤ c,
−y1 + y2 ≤ c,
−y1 − y2 ≤ −1.

The dual problems for various c can be illustrated by drawing the constraints and
some level lines for the dual objective function in a coordinate system with the dual
variables y1 and y2 on the axes. (Figures omitted here.)

If c = 1, the feasible region becomes a rectangle (in fact a square) with corners
(1, 0)T, (0, 1)T, (1, 2)T and (2, 1)T.
From the level lines it is easily seen that the corner y = (1, 2)T

is the optimal solution, with objective value 3y1 + 7y2 = 17.
(This y is also the vector y of “simplex multipliers” from 2.(b)).

If c = −1, the feasible region becomes empty, since there is no point which satisfies
both y1 − y2 ≤ −1 and −y1 + y2 ≤ −1. This is consistent with the fact that there
was no optimal solution to the primal problem in 2.(c).

If c = 0, the feasible region becomes the line segment between the points
(0.5, 0.5)T and (1.5, 1.5)T.
From the level lines it is easily seen that the end point y = (1.5, 1.5)T

is the optimal solution, with objective value 3y1 + 7y2 = 15.
(This y is also the vector y of “simplex multipliers” from 2.(d)).
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3.(a) The objective function is f(x) = (x1−x2)3 + (x1−x2)2 + (x2−1)2.

Then the gradient of f becomes: ∇f(x)T =

(
3(x1−x2)2 + 2(x1−x2)
−3(x1−x2)2 − 2(x1−x2) + 2(x2−1)

)
,

while the Hessian of f becomes: F(x) =

[
6(x1−x2) + 2 −6(x1−x2)− 2
−6(x1−x2)− 2 6(x1−x2) + 4

]
.

The starting point is x(1) =

(
0
0

)
, with f(x(1)) = 1.

F(x(1)) =

[
2 −2
−2 4

]
is positive definite since 2 > 0, 4 > 0 and 2 · 4− (−2)·(−2) > 0.

Then the first Newton search direction d(1) is obtained by solving the system

F(x(1))d = −∇f(x(1))T, i.e.

[
2 −2
−2 4

]
d =

(
0
2

)
, with the solution d(1) =

(
1
1

)
.

First try t1 = 1, so that x(2) = x(1)+ t1d
(1) = x(1)+ d(1) =

(
1
1

)
.

Then f(x(2)) = 0 < f(x(1)), so t1 = 1 is accepted, and the first iteration is completed.

3.(b) Any local optimal solution to the problem of minimizing f(x) without constraints

must satisfy that ∇f(x)T =

(
3(x1−x2)2 + 2(x1−x2)
−3(x1−x2)2 − 2(x1−x2) + 2(x2−1)

)
=

(
0
0

)
.

By adding these two equations, we obtain that x2 = 1.
By plugging this into any of the two equations, we obtain that 3(x1−1)2 + 2(x1−1) =
= (x1−1)(3(x1−1) + 2) = 0, with the solutions x1 = 1 or x1 = 1/3.

Thus, the only solutions to ∇f(x)T=

(
0
0

)
are x̂ =

(
1
1

)
and x̄ =

(
1/3
1

)
.

F(x̂) =

[
2 −2
−2 4

]
is positive definite, so x̂ =

(
1
1

)
is a local optimal solution, while

F(x̄) =

[
−2 2

2 0

]
is not positive semidefinite, so x̄ =

(
1/3
1

)
is not a local optimal solution.

3.(c) There are several ways to see that there is no global optimal solution to the problem.
One is to let x1 be fixed to zero. Then f(x) = −x32 + x22 + (x2 − 1)2 → −∞ when x2 →∞.

3.(d) Let C be a given convex set in IR2.
If the Hessian F(x) is positive semidefinite for all x ∈ C then f is convex on C.

F(x) =

[
6(x1−x2) + 2 −6(x1−x2)− 2
−6(x1−x2)− 2 6(x1−x2) + 4

]
is positive semidefinite if and only if:

(i) 6(x1−x2) + 2 ≥ 0,
(ii) 6(x1−x2) + 4 ≥ 0, and
(iii) (6(x1−x2) + 2)(6(x1−x2) + 4)− (6(x1−x2) + 2)2 ≥ 0.

(i) holds if 6(x1−x2) + 2 ≥ 0, but then (ii) and (iii) also hold!
It follows that with a1 = −3 and a2 = 3, f is convex on the convex set
C = { (x1, x2)

T ∈ IR2 | a1x1 + a2x2 ≤ 1}.
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4.(a) The Lagrange function for the considered problem is given by

L(x,y) = 1
2 xTx + yT(b−Ax), with x ∈ IR4 and y ∈ IR2.

The Lagrange relaxed problem PRy is defined, for a given y ≥ 0,
as the problem of minimizing L(x,y) with respect to x ∈ IR4.

Since L(x,y) = 1
2 xTI x− (ATy)Tx + bTy , and the unit matrix I is positive

definite, the unique optimal solution to PRy is given by x̃(y) = ATy.

Then the dual objective function becomes ϕ(y) = L(x̃(y),y) = −1
2 yTAATy + bTy,

where AAT =

[
30 20
20 30

]
, which is positive definite, and b =

(
18
30

)
.

The dual problem can thus be written:
D: maximize ϕ(y) = −15y21 − 20y1y2 − 15y22 + 18y1 + 30y2 subject to y1 ≥ 0 and y2 ≥ 0.

4.(b) In order for (x̂, ŷ) to satisfy the first of the conditions in GOC, x̂ should minimize
L(x, ŷ) with respect to x ∈ IR4, which according to (a) gives that x̂ = x̃(ŷ) = ATŷ, i.e.

x̂1
x̂2
x̂3
x̂4

 =


1 4
2 3
3 2
4 1

( ŷ1ŷ2
)

=


ŷ1 + 4ŷ2
2ŷ1 + 3ŷ2
3ŷ1 + 2ŷ2
4ŷ1 + ŷ2

.

Then the global optimality conditions (GOC) become:

(GOC-1): (x̂1, x̂2, x̂3, x̂4)
T = ŷ1(1, 2, 3, 4)T + ŷ2(4, 3, 2, 1)T.

(GOC-2): 18−x̂1−2x̂2−3x̂3−4x̂4 ≤ 0 and 30−4x̂1−3x̂2−2x̂3−x̂4 ≤ 0.
(GOC-3): ŷ1 ≥ 0 and ŷ2 ≥ 0.
(GOC-4): ŷ1(18−x̂1−2x̂2−3x̂3−4x̂4) = 0 and ŷ2(30−4x̂1−3x̂2−2x̂3−x̂4) = 0.

We are searching for a solution with ŷ1 = 0 and ŷ2 > 0.
In this case, the above conditions are simplified to the following:

(GOC-1)’: (x̂1, x̂2, x̂3, x̂4)
T = ŷ2(4, 3, 2, 1)T.

(GOC-2)’: 18−x̂1−2x̂2−3x̂3−4x̂4 ≤ 0 and 30−4x̂1−3x̂2−2x̂3−x̂4 ≤ 0.
(GOC-3)’: ŷ1 = 0 and ŷ2 > 0.
(GOC-4)’: 30−4x̂1−3x̂2−2x̂3−x̂4 = 0.

Combining (GOC-1)’ and (GOC-4)’ implies that ŷ2 = 1 and (x̂1, x̂2, x̂3, x̂4)
T = (4, 3, 2, 1)T,

which satisfy both (GOC-1)’ and (GOC-4)’.

Then checking (GOC-2)’ and (GOC-3)’ gives that:
18−x̂1−2x̂2−3x̂3−4x̂4 = −2 ≤ 0, OK!, and ŷ2 = 1 > 0, OK!

It follows that the GOC are satisfied by x̂ = (4, 3, 2, 1)T and ŷ = (0, 1)T,
and consequently, x̂ and ŷ are optimal to P and D, respectively.
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5.(a) That f(x̂) ≤ f(x) for all x ∈ IRn means by definition that x̂ is a global minimum point
to the quadratic function f , which in turn (since H is symmetric and positive semidefinite)
is equivalent to that Hx̂ = −c.

This implies that x̂ 6= 0, since if x̂ = 0 then Hx̂ = H0 = 0 6= −c (since c 6= 0).

Further, since x̂ is a global minimum point to f , while 0 is not, we get that

f(x̂) < f(0) = 1
2 0TH 0 + cT0 = 0.

Finally, since

f(x̂) = 1
2 x̂THx̂ + cTx̂ = 1

2 x̂THx̂ + (−Hx̂)Tx̂ = 1
2 x̂THx̂− x̂THx̂ = −1

2 x̂THx̂,

we get that 0 > f(x̂) = −1
2 x̂THx̂, which shows that x̂THx̂ > 0.

5.(b) The considered problem can be written:

minimize 1
2 xTHx + cTx subject to Ax = b, with A = cT and b = k cTx̂ (a scalar).

The matrix H is positive semidefinite, so the following Lagrange optimality conditions
are both necessary and sufficient conditions for a global optimum:

Hx−ATu = −c
Ax = b

In our case, Hx−ATu = −c is equivalent to that Hx = −(1−u)c, with u ∈ IR,
while Ax = b is equivalent to that cTx = k cTx̂.

From 5.(a), we know that Hx̂ = −c, so the vector x̄ = (1−u)x̂ satisfies Hx̄ = −(1−u)c.
Further, by chosing u = 1−k, so that (1−u) = k, x̄ also satisfies cTx̄ = k cTx̂.

The conclusion is that x̄ = k x̂ is a global optimal solution to the considered problem.

The optimal value of the considered problem is now given by

f(x̄) = 1
2 x̄THx̄ + cTx̄ = 1

2 k
2x̂THx̂ + k(−Hx̂)Tx̂ = 1

2(k2−2k) x̂THx̂.

Since, by 5.(a), x̂THx̂ > 0, we get that

f(x̄) > 0 if and only if k2−2k > 0, i.e. if and only if k > 2 or k < 0.

8


