
Solutions to exam in SF1811 Optimization, March 2016

1.(a)

We note that each column in the matrix A contains one “+1” and one “−1”, while all the
other elements in the column are zeros. We also note that the sum of the elements in the
vector b is zero. These observations imply that the LP problem is in fact a balanced network
flow problem with 5 nodes (one for each row in A) and 6 directed arcs (one for each column
in A). The network corresponding to the given A, b and c in this exercise can be illustrated
by FIGURE 1 below, where the supply at the nodes (i.e. the components in the vector b),
and the unit costs of the arcs (i.e. the components in the vector c) are written in the figure.
Arcs from Node1 are directed from left to right, while arcs from Node2 are directed from
right to left. Negative supply means demand. If the flow in the arc from node i to node j is
denoted xij , the variable vector is x = (x13, x14, x15, x23, x24, x25)

T.

1.(b)

The suggested solution x̃ = (400, 300, 0, 0, 200, 600)T can be illustrated by the spanning tree
in FIGURE 2 below, with the arc-flows written on the arcs.
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The suggested solution is clearly feasible, since there is flow balance in each of the four nodes
and all arc-flows are non-negative. It remains to show that it is optimal.
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The simplex multipliers yi for the five nodes are calculated by y5 = 0 and yi− yj = cij for all
arcs (i, j) in the spanning tree. By using FIGURE 3 below, the yi are calculated in the order
y5 = 0, y2 = 4, y4 = 2, y1 = 5 and y3 = 0.

Then the reduced cost for the two non-basic variables are calculated by rij = cij − yi + yj ,
see FIGURE 4 below.
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If q = 5 then both r15 ≥ 0 and r23 ≥ 0, so that the suggested solution x̃ is optimal.

1.(c)

If q = 3, then the reduced cost r23 in FIGURE 4 becomes r23 = q − 4 = −1 < 0,
which means that we should let the currently non-basic variable x23 increase from zero.
Thus, let x23 = t, where t increase from zero. The current basic variables dependence of t is
illustrated in FIGURE 5 below. It is clear that t may increase to at most 200. Then the new
basic feasible solution x̂ in FIGURE 6 is obtained.
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Again, the simplex multipliers yi for the nodes are calculated by y5 = 0 and yi − yj = cij for
all arcs (i, j) in the spanning tree. By using FIGURE 7 below, the yi are calculated in the
order y5 = 0, y2 = 4, y3 = 4− q, y1 = 9− q and y4 = 6− q.
Then the reduced cost for the two non-basic variables are calculated by rij = cij − yi + yj ,
see FIGURE 8 below.
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Since q = 3, both r15 ≥ 0 and r24 ≥ 0, so that x̂ in FIGURE 6 is optimal.
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1.(d)

It follows from FIGURE 4 that the solution x̃ in FIGURE 2 is optimal whenever q ≥ 4.
Therefore, the optimal value of the considered LP problem is in this case

cTx̃ = 5 · 400 + 3 · 300 + 2 · 200 + 4 · 600 = 5700. (If q ≥ 4.)

It follows from FIGURE 8 that the solution x̂ in FIGURE 6 is optimal whenever 2 ≤ q ≤ 4.
Therefore, the optimal value of the considered LP problem is in this case

cTx̂ = 5 · 200 + 3 · 500 + q · 200 + 4 · 600 = 4900 + 200q. (If 2 ≤ q ≤ 4.)

The required graph of the optimal value (vertical axis) for different values on q
(horizontal axis) thus looks as follows:
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2.(a) We have a QP problem with equality constraints, i.e. a problem of the form

minimize 1
2 xTHx + cTx subject to Ax = b,

with H =

 0 −1 −1
−1 0 −1
−1 −1 0

, c =

0
0
0

, A = [ 1 2 3 ] and b = 4.

The general solution to Ax = b, i.e. x1 + 2x2 + 3x3 = 4, is given byx1x2
x3

 =

 4
0
0

 +

−2
1
0

· v1 +

−3
0
1

· v2, for arbitrary values on v1 and v2,

which means that x̄ =

 4
0
0

 is a feasible solution, and Z =

−2 −3
1 0
0 1

 is a matrix

whos columns form a basis for the nullspace of A.

After the variable change x = x̄+Zv we should solve the system (ZTHZ)v = −ZT(Hx̄+c),

provided that ZTHZ is at least positive semidefinite.

We have that ZTHZ =

[
4 4
4 6

]
, which is positive definite since 4 > 0, 6 > 0, 4 · 6− 4 · 4 > 0.

The system (ZTHZ)v = −ZT(Hx̄+c) becomes

[
4 4
4 6

](
v1
v2

)
=

(
4
4

)
, with the (unique)

solution v̂ =

(
1
0

)
. Thus, x̂ = x̄ + Zv̂ =

2
1
0

 is the (unique) optimal solution.

2.(b) Now the constraint matrix A should be changed to A = [ 1 − 2 3 ], which implies

that the nullspace matrix Z is changed to Z =

 2 −3
1 0
0 1

, while the vector x̄ is unchanged.

Then ZTHZ =

[
−4 0

0 6

]
, which is not positive semidefinite.

Thus, there is no optimal solution to the problem in this case.

With the variable change x = x̄ + Zv, we get (using that c = 0) that

f(x) = f(x̄ + Zv) = 1
2 (x̄ + Zv)TH(x̄ + Zv) = 1

2 x̄THx̄ + x̄THZv + 1
2 vT(ZTHZ)v =

= 0− 4v1 − 4v2 − 2v21 + 3v22.

So by letting v1 = t and v2 = 0, the objective value → −∞ when t→∞.

This corresponds to letting x(t) = x̄ + t· d, where d = (2, 1, 0)T = the first column in Z.

Then Ax(t) = b for all t ∈ IR and f(x(t)) = −4t− 2t2 → −∞ when t→∞.
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3.(a) We have an LP problem on the standard form

minimera cTx

d̊a Ax = b ,

x ≥ 0 ,

where A =

[
1 2 2 1 0
2 2 1 0 1

]
, b =

(
180
120

)
and cT = (−3, −4, −2, 0, 0).

The starting solution should have the basic variables x4 and x5, which means that
β = (4, 5) and ν = (1, 2, 3).

The corresponding basic matrix is Aβ =

[
1 0
0 1

]
, while Aν =

[
1 2 2
2 2 1

]
.

The values of the current basic variables are given by xβ = b̄, where the vector b̄ is
calculated from the system Aβb̄ = b, i.e.[

0 1
1 0

](
b̄1
b̄2

)
=

(
180
120

)
, with the solution b̄ =

(
b̄1
b̄2

)
=

(
180
120

)
.

The vector y with simplex multipliers is obtained by the system AT
βy = cβ, i.e.[

1 0
0 1

](
y1
y2

)
=

(
0
0

)
, with the solution y =

(
y1
y2

)
=

(
0
0

)
.

Then the reduced costs for the non-basic variables are obtained from

rTν = cTν − yTAν = (−3, −4, −2)− (0, 0)

[
1 2 2
2 2 1

]
= (−3, −4, −2).

Since rν2 = r2 = −4 is smallest, and < 0, we let x2 become the new basic variable.

Then we should calculate the vector ā2 from the system Aβ ā2 = a2, i.e.[
1 0
0 1

](
ā12
ā22

)
=

(
2
2

)
, with the solution ā2 =

(
ā12
ā22

)
=

(
2
2

)
.

The largest permitted value of the new basic variable x2 is then given by

tmax= min
i

{
b̄i
āi2
| āi2 > 0

}
= min

{
180

2
,

120

2

}
=

120

2
=

b̄2
ā12

.

Minimizing index is i = 2, which implies that xβ2 = x5 should no longer be a basic variable.
Its place as basic variable is taken by x2, so that β = (4, 2) and ν = (1, 5, 3).

The corresponding basic matrix is Aβ =

[
1 2
0 2

]
, while Aν =

[
1 0 2
2 1 1

]
.

The values of the current basic variables are xβ = b̄, where the vector b̄ is
calculated from the system Aβb̄ = b, i.e.[

1 2
0 2

](
b̄1
b̄2

)
=

(
180
120

)
, with the solution b̄ =

(
b̄1
b̄2

)
=

(
60
60

)
.
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The vector y with simplex multipliers is obtained from the system AT
βy = cβ, i.e.[

1 0
2 2

](
y1
y2

)
=

(
0
−4

)
, with the solution y =

(
y1
y2

)
=

(
0
−2

)
.

Then the reduced costs for the non-basic variables are obtained from

rTν = cTν − yTAν = (−3, 0, −2)− (0, −2)

[
1 0 2
2 1 1

]
= (1, 2, 0).

Since rν ≥ 0 the current feasible basic solution is optimal.

Thus, x = (0, 60, 0, 60, 0)T is an optimal solution, with optimal value cTx = −240.

3.(b) If the primal problem is on the standard form

minimize cTx
subject to Ax = b,

x ≥ 0,

the corresponding dual problem is: maximize bTy subject to ATy ≤ c,
which becomes

maximize 180y1 + 120y2
subject to y1 + 2y2 ≤ −3,

2y1 + 2y2 ≤ −4,
2y1 + y2 ≤ −2,
y1 ≤ 0,

y2 ≤ 0.

This dual problem can be illustrated by drawing the constraints and some level lines
(orthogonal to the vector (180, 120)T) for the objective function, in a coordinate system
with y1 and y2 on the axes. (The figure is omitted here.)

From this figure it is seen that the point y = (0, −2)T is an optimal dual solution.

This is consistent with the well-known fact that an optimal dual solution is given by
the vector y of “simplex multipliers” for the optimal basic solution in (a) above.

One more optimality check: y = (0, −2)T satisfies the dual constraints, with dual
objective value 180y1 + 120y2 = −240 = the optimal value of the primal problem!
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3.(c)

The complementarity conditions become:

x1 + 2x2 + 2x3 + x4 = 180,
2x1 + 2x2 + x3 + x5 = 120,
xj ≥ 0, j = 1, . . . , 5,

y1 + 2y2 + 3 ≤ 0,
2y1 + 2y2 + 4 ≤ 0,
2y1 + y2 + 2 ≤ 0,
y1 ≤ 0,
y2 ≤ 0,

x1 ( y1 + 2y2 + 3) = 0,
x2 (2y1 + 2y2 + 4) = 0,
x3 (2y1 + y2 + 2) = 0,
x4 y1 = 0,
x5 y2 = 0.

From (b) above, we know that y1 = 0, y2 =−2 is an optimal dual solution.
If these values are plugged into the complementarity conditions above, it follows
that x is an optimal primal solution if and only if it satisfies the following:

x1 + 2x2 + 2x3 + x4 = 180,
2x1 + 2x2 + x3 + x5 = 120,
xj ≥ 0, j = 1, . . . , 5,

x1 (0− 2 + 3) = 0,
x2 (0− 4 + 4) = 0,
x3 (0− 2 + 2) = 0,
0x4 = 0,
−2x5 = 0,

which may be simplified to
2x2 + 2x3 + x4 = 180,
2x2 + x3 = 120,
x1 = 0,
x5 = 0,
xj ≥ 0, j = 2, 3, 4,

The general solution to
2x2 + 2x3 + x4 = 180
2x2 + x3 = 120

is

x2x3
x4

 =

 30+t/2
60−t
t

 for t ∈ IR,

whereafter the constraints xj ≥ 0, j = 2, 3, 4 imply that 0 ≤ t ≤ 60.

Thus, the complete set of optimal solution to the primal problem is given by

(x1, x2, x3, x4, x5)
T = (0, 30+t/2, 60−t, t, 0)T for t ∈ [ 0, 60 ].

Two of these optimal solutions are basic feasible solutions, namely x̃ = (0, 30, 60, 0, 0)T

and x̂ = (0, 60, 0, 60, 0)T, and every optimal solution is a convex combination of x̃ and x̂.
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4.(a) The objective function is f(x) = x31 + x32 − 3x1x2.

Then the gradient and Hessian of f becomes:

∇f(x)T =

(
3x21 − 3x2

3x22 − 3x1

)
and F(x) =

[
6x1 −3
−3 6x2

]
.

We will use the well known fact that a symmetric 2× 2 matrix H =

[
a b
b c

]
* is positive definite if and only if a > 0, c > 0 and ac− b2 > 0,
* is positive semidefinite if and only if a ≥ 0, c ≥ 0 and ac− b2 ≥ 0,
which is easily verified, e.g. by an LDLT factorization.

The starting point for Newtons method is x(1) =

(
2
2

)
, with f(x(1)) = 4.

F(x(1)) =

[
12 −3
−3 12

]
is positive definite since 12 > 0, 12 > 0 and 12 · 12− (−3)·(−3) > 0.

Then the first Newton search direction d(1) is obtained by solving the system

F(x(1))d = −∇f(x(1))T, i.e.

[
12 −3
−3 12

]
d =

(
−6
−6

)
, with the solution d(1) =

(
−2/3
−2/3

)
.

First try t1 = 1, so that x(2) = x(1)+ t1d
(1) = x(1)+ d(1) =

(
4/3
4/3

)
.

Then f(x(2)) = −16/27 < f(x(1)), so t1 = 1 is accepted, and the first iteration is completed.

4.(b) Any local optimal solution to the problem of minimizing f(x) without constraints

must satisfy that ∇f(x)T =

(
3x21 − 3x2

3x22 − 3x1

)
=

(
0

0

)
, i.e. x2 = x21 and x1 = x22,

which imply that x2 = x42, i.e. x2(x
3
2 − 1) = 0, with the solutions x2 = 0 or x2 = 1.

If x2 = 0 then x1 = 0 and if x2 = 1 then x1 = 1.

Thus, the only solutions to ∇f(x)T=

(
0
0

)
are x̃ =

(
0
0

)
and x̂ =

(
1
1

)
.

F(x̃) =

[
0 −3
−3 0

]
is not positive semidefinite, so x̃ =

(
0
0

)
is not a local optimal solution.

F(x̂) =

[
6 −3
−3 6

]
is positive definite, so x̂ =

(
1
1

)
is a local optimal solution.

Thus, the only local optimal solution to the problem of minimizing f(x) without any

constraints is x̂ =

(
1
1

)
, with f(x̂) = −1.

(But there is no global optimal solution. If x(t) = (−t, 0)T then f(x(t)) = −t3 → −∞
when t→∞.)
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4.(c) With h(x) = x1 + x2 + q, the Lagrange optimality conditions become:

∇f(x)T +∇h(x)Tu =

(
3x21 − 3x2 + u

3x22 − 3x1 + u

)
=

(
0

0

)
and h(x) = x1 + x2 − q = 0.

The first two equations imply that 0 = 3(x21 − x22 + x1 − x2) = 3(x1 − x2)(x1 + x2 + 1),

i.e. x1 = x2 or x1 + x2 + 1 = 0 (or both).

If q = −1 then x1 + x2 − 1 = 0 for all feasible solutions x,
so then the only remaining possibility is x1 = x2.
Then h(x) = 0 implies that x1 = x2 = 0.5, whereafter u = 0.75.

If q = 1 then x1 + x2 + 1 = 0 for all feasible solutions x, and then every feasible
solutions x satisfies the Lagrange optimality conditions together with the Lagrange
multiplier u = 3(x2 − x21) = 3(x1 − x22) !

Concerning the question of local and/or global optimality, we can use a nullspace
approach as in QP. The complete set of solutions to the constraint x1 + x2 + q = 0 is

x1(t) = −q − t = −(q + t) and x2(t) = t for t ∈ IR.

The objective function values for these feasible solutions are

f(x(t)) = −(q + t)3 + t3 + 3(q + t) t = −q3 + 3(q−q2) t+ 3(1−q) t2.

If q = −1 then f(x(t)) = 1− 6 t+ 6 t2, with a strikt global minimum for t = 0.5,
which implies that x(0.5) = (0.5, 0.5)T is a global optimal solution to P1.

If q = 1 then f(x(t)) = 1 for all t ∈ IR, which implies that every feasible
solutions x to P1 is a global optimal solution to P1.
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5.(a)

Since d1(x)+d2(x)+d3(x) = x1 + x2 + b−a1x1−a2x2, the problem becomes:

minimize b+ (1−a1)x1 + (1−a2)x2
subject to a1x1+a2x2 ≤ b,

x1 ≥ 0 and x2 ≥ 0.

Since a21+a22 = 1, a1 > 0 and a2 > 0, it follows that a1 < 1 and a2 < 1.
Thus, 1−a1 > 0 and 1−a2 > 0, and since both x1 and x2 are required to be ≥ 0,
the objective function can never be less than b for any feasible solution.
With x = (0, 0)T, which is a feasible solution since b > 0, the objective value is = b.
For any other feasible solution, which has at least one xj > 0, the objective value is > b.
Thus, x = (0, 0)T is the unique optimal solution to the problem.

5.(b)

Since (d1(x))2 +(d2(x))2 +(d3(x))2 = x21 +x22 +(b−a1x1−a2x2)2, the problem can be written:

minimize ‖Ax−b‖2

subject to a1x1+a2x2 ≤ b,
x1 ≥ 0 and x2 ≥ 0,

where A =

 1 0
0 1
−a1 −a2

 and b =

 0
0
−b

 , so that Ax−b =

 x1
x2

b−a1x1−a2x2

.

Let us first try to minimize the objective function without any constraints, to see if there is
an optimal solution in the interior of the triangle. This leads to the least squares problem

minimize ‖Ax−b‖2 subject to x ∈ IR2.

which is equivalent to the normal equations ATAx = ATb, which in this case become[
1 + a21 a1a2

a1a2 1 + a22

](
x1

x2

)
=

(
a1b

a2b

)
.

Using the hint, we get that the solution to these equations is(
x̂1

x̂2

)
=

1

2

[
1 + a22 −a1a2
−a1a2 1 + a21

](
a1b

a2b

)
=

b

2

(
a1

a2

)
.

But then x1 > 0, x2 > 0 and a1x1+a2x2 = 0.5 b (a21 + a22) = 0.5 b < b,
so that x̂ satisfies all the constraints (with strict inequalities).

Thus, since x̂ ∈ T and x̂ is the minimizing point on the whole IR2,
x̂ must in particular be the minimizing point on T .
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5.(c)
The problem of minimizing the maximal distance can be written as the following
LP problem in x1, x2 and z :

minimize z
subject to z − x1 ≥ 0,

z − x2 ≥ 0,
z + a1x1 + a2x2 ≥ b,
−a1x1 − a2x2 ≥ −b,
x1 ≥ 0,
x2 ≥ 0.

The objective function and the first three constraints imply that, at any optimal solution,
z = max{ x1, x2, b−a1x1−a2x2 } = max{ d1(x), d2(x), d3(x) }.
The remaining three constraints are equivalent to that x ∈ T .

The corresponding dual LP problem in y ∈ IR4 is

maximize by3 − by4
subject to y1 + y2 + y3 = 1,

−y1 + a1y3 − a1y4 ≤ 0,
−y2 + a2y3 − a2y4 ≤ 0,
yi ≥ 0, i = 1, 2, 3, 4.

After carefully looking at a figure of T , a qualified guess is that the optimal x is located at
the point in the triangle where all three distances are equal, i.e. at the solution to

x1 = x2 = b−a1x1−a2x2, which is x̂1 = x̂2 =
b

1 + a1 + a2
, and then ẑ =

b

1 + a1 + a2
.

(x̂1, x̂2, ẑ)
T is an optimal solution to the primal problem if and only if there is a vector

ŷ ∈ IR4 such that (x̂1, x̂2, ẑ)
T is feasible to the primal, ŷ is feasible to the dual,

and the following complementarity conditions hold:

(ẑ − x̂1) ŷ1 = 0,
(ẑ − x̂2) ŷ2 = 0,
(ẑ + a1x̂1 + a2x̂2 − b) ŷ3 = 0,
(b− a1x̂1 − a2x̂2) ŷ4 = 0,
(−ŷ1 + a1ŷ3 − a1ŷ4) x̂1 = 0,
(−ŷ2 + a2ŷ3 − a2ŷ4) x̂2 = 0.

Plugging in the above (x̂1, x̂2, ẑ)
T (which is feasible to the primal), the complementarity

conditions, together with the dual equality constraint, simplifies to:

ŷ4 = 0,
−ŷ1 + a1ŷ3 − a1ŷ4 = 0,
−ŷ2 + a2ŷ3 − a2ŷ4 = 0,
ŷ1 + ŷ2 + ŷ3 = 1,

with the solution ŷ = γ (a1, a2, 1, 0)T, where γ = 1/(1 + a1 + a2).
Since this ŷ is also feasible to the dual, our suggested (x̂1, x̂2, ẑ)

T is optimal to the primal
(and ŷ is optimal to the dual).
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