
SF2812 Applied linear optimization, final exam
Wednesday January 16 2008 14.00–19.00

Brief solutions

1. (a) The primal-dual nonlinear equation is given by

Ax = b,

ATy + s = c,

XSe = σµe,

where e = (1 1 . . . 1)T and µ = (xTs)/n = 1.54 for some σ ∈ [0, 1]. With
X = diag(x) and S = diag(s) the linear system of equations may be written

A 0 0
0 AT I

S 0 X




∆x

∆y

∆s

 = −


Ax− b

ATy + s− c

XSe− σµe

 .

We may for example let σ = 0.1. Insertion of numerical values gives

2 4 −1 0 0 0 0 0 0 0 0 0 0
1 1 0 −1 0 0 0 0 0 0 0 0 0
3 1 0 0 −1 0 0 0 0 0 0 0 0
0 0 0 0 0 2 1 3 1 0 0 0 0
0 0 0 0 0 4 1 1 0 1 0 0 0
0 0 0 0 0 −1 0 0 0 0 1 0 0
0 0 0 0 0 0 −1 0 0 0 0 1 0
0 0 0 0 0 0 0 −1 0 0 0 0 1

1.7 0 0 0 0 0 0 0 1 0 0 0 0
0 0.5 0 0 0 0 0 0 0 2 0 0 0
0 0 0.1 0 0 0 0 0 0 0 8 0 0
0 0 0 0.1 0 0 0 0 0 0 0 2 0
0 0 0 0 1 0 0 0 0 0 0 0 4





∆x1

∆x2

∆x3

∆x4

∆x5

∆y1

∆y2

∆y3

∆s1

∆s2

∆s3

∆s4

∆s5



=



0
0
0
0
0
0
0
0

−1.546
−0.846
−0.646
−0.046
−3.846



.

(b) If we let αmax be the maximum value of α for which x + α∆x ≥ 0 and s + α∆s ≥ 0,
we must have α < αmax. Ideally we would want steplength one. One (crude) choice
would be α = min{1, 0.99αmax}, and then let

x = x + α∆x, y = y + α∆y, s = s + α∆s.

2. (a) We have x∗ nonnegative with Ax∗ = b and

A+ =


4 −1
1 0
1 0

 .

1
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We see that A+ has a leading nonsingular submatrix of dimension 2×2. Hence,
A+ has full column rank. It follows that x∗ is a basic feasible solution.

(b) First (i). Let xB = (x1 x2 x3)T . Then xB = (0 1 2)T . Compute y from
BTy = cB and let sN = cN −NTy. We obtain

2 1 3
4 1 1

−1 0 0




y1

y2

y3

 =


8
7

−1

 , which gives y =


1
3
2
3
2

 ,

(
s4

s5

)
=

(
1
2
3
2

)
.

Hence, since sN ≥ 0, the simplex method shows that x∗ is optimal.
Now (ii). Let xB = (x2 x3 x4)T . Then xB = (1 2 0)T . Compute y from
BTy = cB and let sN = cN −NTy. We obtain

4 1 1
−1 0 0

0 −1 0




y1

y2

y3

 =


7

−1
−1

 , which gives y =


1
1
2

 ,

(
s1

s4

)
=

(
−1

2

)
.

Since s1 < 0, x1 will enter the basis. We obtain the change in the basic variables
from BpB = −A1, i.e.,

4 −1 0
1 0 −1
1 0 0




p2

p3

p4

 =


−2
−1
−3

 , which gives


p2

p3

p4

 =


−3
−10
−2

 .

Since x4 = 0, it follows that x4 leaves the basis, and the new basic variables
are xB = (x1 x2 x3)T , which has been covered in (i).
Finally (iii). Let xB = (x2 x3 x5)T . Then xB = (1 2 0)T . Compute y from
BTy = cB and let sN = cN −NTy. We obtain

4 1 1
−1 0 0

0 0 −1




y1

y2

y3

 =


7

−1
0

 , which gives y =


1
3
0

 ,

(
s1

s4

)
=

(
3
2

)
.

Hence, since sN ≥ 0, the simplex method shows that x∗ is optimal.
Consequently, AF was right in that x∗ is optimal. By the simplex method, he
could have obtained the final basis as xB = (x1 x2 x3)T or xB = (x2 x3 x5)T .

3. (a) For u = 1, the resulting Lagrangian relaxed problem becomes

(IP1)
minimize −2x1 − 1x2 − 3x3

subject to −x1 − 2x2 − 3x3 ≥ −3,
xj ∈ {0, 1}, j = 1, . . . , n.

By enumeration, we find two optimal solutions, x(1) = (1 1 0)T and x(1) =
(0 0 1)T .

(b) If x(1) is an optimal solution to the Lagrangian relaxed problem for u = 1, a
subgradient is given by 3x1(1) + 6x2(1) + 7x3(1) − 8. Hence, x(1) = (1 1 0)T

gives a subgradient s1 = 1 and x(1) = (0 0 1)T gives a subgradient s2 = −1.
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(c) Since 0 = 1/2s1 + 1/2s2, the zero vector is a subgradient to ϕ(u) at u = 1.
Hence, u = 1 is an optimal solution to the dual problem.

4. (See the course material.)

5. The suggested initial extreme points v1 = (−1 1 − 1 1)T and v2 = (−1 1 1 − 1)T

give the initial basis matrix

B =

(
−1 7

1 1

)
.

The right-hand side in the master problem is b = (1 1)T . Hence, the basic variables
are given by

(
α1

α2

)
=

(
−1 7

1 1

)−1(
1
1

)
=

(
3
4
1
4

)
.

The cost of the basic variables are given by (cTv1 cTv2) = (−2 − 2). Consequently,
the simplex multipliers are given by

(
y1

y2

)
=

(
−1 1

7 1

)−1(
−2
−2

)
=

(
0

−2

)
.

By forming cT − y1A = (1 − 1 1 − 1) we obtain the subproblem

2+ minimize x1 − x2 + x3 − x4

subject to −1 ≤ xj ≤ 1, j = 1, . . . , 4.

The resulting optimal solution gives a new extreme point v3 = (−1 1 − 1 1)T with
reduced cost −2. The corresponding column in the master problem is (5 1)T , and
we obtain

pB = −B−1

(
5
1

)
= −

(
−5

3
2
3

)
.

By considering the step from αB along pB and requiring nonnegativity, we obtain
the maximum steplength as 3/8, and α2 leaves the basis. Hence, α3 replaces α2 as
basic variable.

The basic variables are now given by

(
α1

α3

)
=

(
−1 5

1 1

)−1(
1
1

)
=

(
2
3
1
3

)
.
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The cost of the basic variables are given by (cTv1 cTv3) = (−2 − 4). Consequently,
the simplex multipliers are given by

(
y1

y2

)
=

(
−1 1

5 1

)−1(
−2
−4

)
=

(
−1

3

−7
3

)
.

By forming cT − y1A = (2/3 − 1/3 4/3 0) we obtain the subproblem

7
3+ minimize 2

3x1 − 1
3x2 + 4

3x3

subject to −1 ≤ xj ≤ 1, j = 1, . . . , 4.

The resulting optimal solutions are v1 and v3, which both give reduced cost 0. Hence,
we have found an optimal solution to the original problem. The solution is given by

v1α1 + v3α3 =


−1

1
−1

1


2
3

+


−1

1
−1
−1


3
5

=


−1

1
−1

1
3

 .

Note: This particular problem may be simplified further, since it is a continuous
knapsack problem. By noting that in the subproblem, if we denote the optimal
solution of the subproblem by x(y1), we obtain xi(y1) = −1 if ci − yai < 0 and
xi(y1) = −1 if ci − yai > 0. Hence, if we order the ratios ci/ai in decreasing
order, we obtain c3/a3 = 1, c2/a2 = 1/2, c4/a4 = −1/3, c1/a1 = −1. Thus, we
may start with y1 < −1 for which x(y1) gives the maximum value of the constraint
−x1 + 2x2 + x3 − 3x4 − 1 in the interval 1− ≤ xi ≤ 1, i = 1, . . . , 4. We may then
increase y1 until we reach one point among −1, −1/3, 1/2 and 1 at which passing
this point with y1 makes the constraint −x1(y1) + 2x2(y1) + x3(y1) − 3x4(y1) − 1
switch from being positive to being negative. This is y1 = −1/3 in this case, as
was concluded in the final master problem. Then the variable that switches at this
point may be assigned a value in the interval that makes the constraint satisfied.
Rather than solve a sequence of master problems, we can increase y1 over the finite
set of points, and need then only solve one subproblem to get the appropriate linear
combination.


