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KTH Mathematics A4 has full column rank. It follows that 2™ is a basic feasible solution.

We see that A has a leading nonsingular submatrix of dimension 2 x 2. Hence,

(b) First (i). Let zp = (21 @2 23)7. Then zp = (0 1 2)7. Compute y from

- s . B'y = cp and let sy = cy — N'y. We obtain
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Brief solutions 41 1 w | = 7|, which gives y= % 7 ( 24 > _ ( i
-1 00 Y3 -1 % 5 2

(a) The primal-dual nonlinear equation is given by Hence, since sy > 0, the simplex method shows that " is optimal.

Now (ii). Let 25 = (w2 =3 z4)”. Then zp = (1 2 0)7. Compute y from

Az =1b, BTy =cp and let sy = ¢y — NTy. We obtain
T, _
Ay+s=c 4 11\ (w 7 1
XSe = ope, -1 00 yo | =] -1 |, whichgives y=1]1 [, (81 > = (
- - s
where e = (11 ...1)7 and p = (27s)/n = 1.54 for some o € [0,1]. With 0 -1 0 U3 -1 2 !

X = diag( dS=di the li t f ti be writt
iag(x) an iag(s) the linear system of equations may be written Since s1 < 0, z7 will enter the basis. We obtain the change in the basic variables

A 0 O Ax Az —b from Bpp = —Ay, i.e.,
T I T, .
0o A" I Ay | = Aly+s—c |. 4 —1 0 P 9 P _3
5 0 X As XSe—ope 1 0 -1 ps | = —1 |, which gives p3 | = | —10
‘We may for example let o = 0.1. Insertion of numerical values gives 1 0 0 P4 -3 P4 _9
2 4 —1 0 0 0 0 0 0 0 0 0 0 Azy 0 Since x4 = 0, it follows that x4 leaves the basis, and the new basic variables
r 1 0-1 0 0 0O O 0 0 0 0 0 Ay 0 are zp = (z1 29 3)T, which has been covered in (i).
3 10 0-1 0 0 0 0 0 0 0 0 Az 0 Finally (iii). Let x5 = (v2 23 25)7. Then x5 = (1 2 0)”. Compute y from
660 o0 o0 o0 2 1 3 1 0 0 0 0 Ay 0 BTy =cp and let sy = cy — NTy. We obtain
0 0 0 0 0 4 1 1 0 1 0 0 0 Az 0
000 0 0 0 -1 0 0 0 0 1 0 0|4y 0 41 1) (0 7 1 s :
00 0 0 0 0 -1 0 0 0 0 1 0 Ay | = 0 |- -10 0 y2 | =| —1 |, whichgives y=13 |, ( . > = (
o 0 0 0 0 0 0 -1 0 0 0 0 1 Ays 0 00 -1 y3 0 o
1.7 0 0 0 0 0 0 0 1 0 0 0 0 Asy —1.546 o X > 0. the simpl hod sh I % . imal
0 05 0 0 0 0 0 0 0 9 0 0 0 Ass —0.846 ence, since sy > 0, the simplex met*o shows that 2" is optimal.
0 001 0 0 0 0 0 0 0 8 0 0 Ass —0.646 Consequently, AF was right in that 2 is optimal. By the simplex method, he
0 0 001 0 0 0 0 0 0 0 2 o0 Asy —0.046 could have obtained the final basis as xp = (x; xo 23)T or xp = (r9 3 x5)T.
0 0 0 0 1 0 0 0 0 0 0 0 4 Ass —3.846

(b) If we let amax be the maximum value of « for which o + aAz > 0 and s + aAs > 0, X R
we must have @ < apax. Ideally we would want steplength one. One (crude) choice 3. (a) For u =1, the resulting Lagrangian relaxed problem becomes

would be o = min{1,0.990max }, and then let minimize —2z; — 1oy — 313

r=wtads, y=ytady, s=s+ads (IP) subject to  —z1 — 229 — 3w3 > =3,
z;e{01}, j=1,...n

; ; ; _ T -
(a) We have 2 nonnegative with Az* — b and By enumeration, we find two optimal solutions, z(1) = (1 1 0)" and (1) =

(0o 1T
4 -1 (b) If 2(1) is an optimal solution to the Lagrangian relaxed problem for u = 1, a
Ar=11 0[. subgradient is given by 3z1(1) 4+ 6z2(1) + 723(1) — 8. Hence, z(1) = (1 1 0)”
1 0 gives a subgradient s; = 1 and z(1) = (0 0 1) gives a subgradient sy = —1.
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(c) Since 0 = 1/2s1 + 1/2s2, the zero vector is a subgradient to p(u) at v = 1.
Hence, v = 1 is an optimal solution to the dual problem.

(See the course material.)

The suggested initial extreme points v; = (=1 1 —1 )T andwy = (-1 1 1 —1)7
give the initial basis matrix

-1
B= 7 .
11
The right-hand side in the master problem is b = (1 1)7. Hence, the basic variables
are given by

-1
a) (17 1\
ar) 11 1)
The cost of the basic variables are given by (c'v; ¢'va) = (=2 — 2). Consequently,
the simplex multipliers are given by

()= () ()

By forming ¢/ — A= (1 —1 1 — 1) we obtain the subproblem

FNEN

2+ minimize 1 — a2+ 23— x4
subject to —1<x; <1,j=1,...,4.

The resulting optimal solution gives a new extreme point v3 = (=1 1 — 1 1)7 with
reduced cost —2. The corresponding column in the master problem is (5 l)T7 and
we obtain

e (3

By considering the step from ap along pp and requiring nonnegativity, we obtain
the maximum steplength as 3/8, and as leaves the basis. Hence, a3 replaces ag as
basic variable.

wolbo Wl

The basic variables are now given by

(-0 0)-()
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The cost of the basic variables are given by (c'v; ¢'v3) = (=2 — 4). Consequently,
the simplex multipliers are given by

w) (-1 1 -2\ (-1
w) 51 -4 )\ -1)
By forming ¢’ —y14 = (2/3 —1/3 4/3 0) we obtain the subproblem

%+ minimize %zl — %.’L‘z + %.’Eg
subject to —1<z;<1,5=1,...,4.

The resulting optimal solutions are v; and vz, which both give reduced cost 0. Hence,
we have found an optimal solution to the original problem. The solution is given by

-1 -1 -1

1 (2 1|3 1

v + U303 = 1 §+ 1 g: 1
1 -1 i

Note: This particular problem may be simplified further, since it is a continuous
knapsack problem. By noting that in the subproblem, if we denote the optimal

solution of the subproblem by z(y1), we obtain z;(y1) = —1 if ¢; — ya; < 0 and
zi(y1) = —1 if ¢; — ya; > 0. Hence, if we order the ratios ¢;/a; in decreasing
order, we obtain c3/az = 1, ca/ag = 1/2, ¢yfaqs = —1/3, ¢c1/ar = —1. Thus, we

may start with y; < —1 for which z(y1) gives the maximum value of the constraint
—x1 + 229 + x3 — 3x4 — 1 in the interval 1— < z; < 1,4 =1,...,4. We may then
increase y; until we reach one point among —1, —1/3, 1/2 and 1 at which passing
this point with y; makes the constraint —z1(y1) + 2z2(y1) + x3(y1) — 3za(y1) — 1
switch from being positive to being negative. This is y1 = —1/3 in this case, as
was concluded in the final master problem. Then the variable that switches at this
point may be assigned a value in the interval that makes the constraint satisfied.
Rather than solve a sequence of master problems, we can increase y; over the finite
set of points, and need then only solve one subproblem to get the appropriate linear
combination.



