
SF2812 Applied linear optimization, final exam
Thursday January 10 2013 8.00–13.00

Examiner: Anders Forsgren, tel. 08-790 71 27.
Allowed tools: Pen/pencil, ruler and eraser. Note! Calculator is not allowed.
Solution methods: Unless otherwise stated in the text, the problems should be solved by
systematic methods, which do not become unrealistic for large problems. Motivate your
conclusions carefully. If you use methods other than what have been taught in the course,
you must explain carefully.
Note! Personal number must be written on the title page. Write only one exercise per
sheet. Number the pages and write your name on each page.
22 points are sufficient for a passing grade. For 20-21 points, a completion to a passing
grade may be made within three weeks from the date when the results of the exam are
announced.

1. Consider a transportation problem (TP ) defined as

(TP )

minimize
3∑

i=1

4∑
j=1

cijxij

subject to
4∑

j=1

xij = ai, i = 1, 2, 3,

3∑
i=1

xij = bj , j = 1, 2, 3, 4,

xij ≥ 0, i = 1, 2, 3, j = 1, 2, 3, 4,

where

C =


4 2 5 1
7 4 7 5
6 4 6 2

 , a =


8

12
10

 , b =


6
8
7
9

 .

The dual problem associated with (TP ) may be written as

(DTP )
maximize

3∑
i=1

aiui +
4∑

j=1

bjvj

subject to ui + vj ≤ cij , i = 1, 2, 3, j = 1, 2, 3, 4.

You have been given X̂, û and v̂ as

X̂ =


6 1.5 0 0.5
0 6.5 5.5 0
0 0 1.5 8.5

 , û =


1
3
2

 , v̂ =


3
1
4
0

 .
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(a) A friend of yours, who has not taken this course, claims that X̂ cannot be
optimal to (TP ), since the transportation problem should have integer valued
optimal solutions when a and b are integers. Comment on your friend’s claim.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2p)

(b) Verify that X̂ is optimal to (TP ) and that û, v̂ is optimal to (DTP ). . . . (3p)
Hint: With S given by sij = cij − ui − vj , i = 1, 2, 3, j = 1, 2, 3, 4, it holds that

S =


0 0 0 0
1 0 0 2
1 1 0 0

 .

(c) Find, using X̂, two integer valued optimal solutions to (TP ). . . . . . . . . . . . (3p)
Hint: It holds that

∑3
i=1

∑4
j=1 cijwij = 0,

∑4
j=1 wij = 0, i = 1, 2, 3, and∑3

i=1 wij = 0, j = 1, 2, 3, 4, for

W =


0 1 0 −1
0 −1 1 0
0 0 −1 1

 .

(d) Explain why you would not obtain X̂ as an answer if you used the simplex
method to solve (TP ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2p)

2. Consider fitting a line y = kx+l to a number of given points (xi, yi), i = 1, . . . ,m. In
particular, k and l should be chosen so that the maximum deviation in the y-direction
is minimized, i.e., k and l are chosen according to mink,l maxi=1,...,m |kxi + l − yi|.
By introducing the extra variable z, the problem may be written as an LP problem
on the form

(LP )
minimize z

subject to −z ≤ kxi + l − yi ≤ z, i = 1, . . . ,m,

where xi, i = 1, . . . ,m and yi, i = 1, . . . ,m, are given parameters, and k, l and z are
the variables. We assume that m ≥ 3 and xi 6= xj for i 6= j.

(a) Formulate the dual problem (DLP ) associated with (LP ). . . . . . . . . . . . . . . (5p)

(b) Given an optimal solution k, l, z to this line fitting problem, show that there
are at least three points among the given points (xi, yi), i = 1, . . . ,m, at which
|kxi + l − yi| = z. You should motivate this result based on properties of the
linear programs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5p)

3. Let (P ) and (D) be defined by

(P )
minimize cTx

subject to Ax = b,
x ≥ 0,

and (D)
maximize bTy

subject to ATy + s = c,
s ≥ 0.
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For a fixed positive barrier parameter µ, consider the primal-dual nonlinear equations

Ax = b,

ATy + s = c,

XSe = µe,

where we in addition require x > 0 and s > 0. Here, X = diag(x), S = diag(s) and
e is an n-vector with all components one.

(a) Assume that x(µ), y(µ) and s(µ) solve the primal-dual nonlinear equations for
a given positive µ, with x(µ) > 0 and s(µ) > 0. Show that x(µ) is feasible to
(P ) and y(µ), s(µ) are feasible to (D) with duality gap nµ. . . . . . . . . . . . . . . (3p)

(b) Derive the system of linear equations that results when the primal-dual nonlin-
ear equations are solved by Newton’s method. . . . . . . . . . . . . . . . . . . . . . . . . . . (5p)

(c) How are the implicit constraints x > 0 and s > 0 handled in a Newton-based
interior method that approximately solves the primal-dual system of nonlinear
equations for a sequence of decreasing values of µ? . . . . . . . . . . . . . . . . . . . . . . (2p)

4. Consider the binary integer programming problem (IP ) given by

(IP )

minimize −5x1 − 7x2 − 10x3

subject to −3x1 − 6x2 − 7x3 ≥ −8,
−x1 − 2x2 − 3x3 ≥ −3,
xj ∈ {0, 1}, j = 1, . . . , n.

Assume that the constraint −3x1 − 6x2 − 7x3 ≥ −8 is relaxed by Lagrangian relax-
ation for a nonnegative multiplier u.

(a) For u = 1, compute two optimal solutions to the resulting Lagrangian relaxed
problem. The Lagrangian relaxed problem may be solved by any method, that
need not be systematic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (4p)

(b) Use the two optimal solutions to the Lagrangian relaxed problem computed in
Exercise 4a to give two different subgradients to the dual objective function ϕ
at u = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (4p)

(c) Show that there is a convex combination of the two subgradients computed in
Exeercise 4b that gives the zero vector. What is the implication for the dual
problem? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2p)

5. Consider a cutting-stock problem with the following data:

W = 11, m = 3, w1 = 3, w2 = 5, w3 = 9, b =
(

60 50 40
)T

.

Notation and problem statement are in accordance to the textbook. Given are
rolls of width W . Rolls of m different widths are demanded. Roll i has width wi,
i = 1, . . . ,m. The demand for roll i is given by bi, i = 1, . . . ,m. The aim is to cut
the W -rolls so that a minimum number of W -rolls are used.
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(a) Solve the the LP-relaxed problem associated with the above problem. Start
with the basic feasible solution associated with the three “pure” cut patterns
(3 0 0)T , (0 2 0)T and (0 0 1)T . The subproblems that arise may be solved in
any way, that need not be systematic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (8p)

(b) Determine a “near-optimal” solution to the original problem. Give a bound on
the maximum deviation from the optimal value of the original problem. . . (2p)

Good luck!


