
SF2822 Applied nonlinear optimization, final exam
Thursday June 5 2008 8.00–13.00

Examiner: Anders Forsgren, tel. 790 71 27.
Allowed tools: Pen/pencil, ruler and rubber; plus a calculator provided by the department.
Solution methods: Unless otherwise stated in the text, the problems should be solved
by systematic methods, which do not become unrealistic for large problems. If you use
methods other than what have been taught in the course, you must explain carefully.
Note! Personal number must be written on the title page. Write only one exercise per
sheet. Number the pages and write your name on each page.
22 points are sufficient for a passing grade. For 20-21 points, a completion to a passing
grade may be made within three weeks from the date when the results of the exam are
announced.

1. Consider the nonlinear optimization problem (NLP ) defined as

(NLP )
minimize 1

2(x1 + 1)2 + 1
2(x2 + 2)2

subject to 3(x1 + x2 − 2)2 + (x1 − x2)2 − 6 = 0.

You have obtained a printout from an SQP solver for this problem. The initial point
is x = (0 0)T and λ = 0. Six iterations, without linesearch, have been performed.
The printout reads:

It x1 x2 λ ‖∇f(x)−∇g(x)λ‖ ‖g(x)‖
0 0 0 0 2.2361 6
1 0.75 −0.25 −0.14583 0.74361 1.75
2 0.5285 0.050045 −0.20644 0.098113 0.29052
3 0.57728 0.041731 −0.21804 0.0044016 0.0081734
4 0.57666 0.043089 −0.21854 4.1731 · 10−6 5.5421 · 10−6

5 0.57666 0.043089 −0.21854 3.9569 · 10−12 4.8512 · 10−12

6 0.57666 0.043089 −0.21854 1.1102 · 10−15 1.7764 · 10−15

(a) Formulate the first QP problem. Verify that the solution to this QP problem
is given by the printout above. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (6p)

(b) How would the iterates change if the constraint in (NLP ) would be changed
to 3(x1 + x2 − 2)2 + (x1 − x2)2 − 6 ≤ 0? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2p)

(c) For the original problem (NLP ), show that in this case the iterates converge
to a global minimizer. (You need not verify the numerical values.) . . . . . . (2p)

Note: According to the convention of the book we define the Lagrangian L(x, λ) as
L(x, λ) = f(x)−λTg(x), where f(x) the objective function and g(x) is the constraint
function.

1



Page 2 of 3 Final exam June 5 2008 SF2822

2. Consider the QP-problem (QP ) defined as

(QP )
minimize 1

2x2
1 + 1

2x2
2

subject to x1 + x2 ≥ 0.

(a) For a given positive barrier parameter µ, find the corresponding optimal so-
lution x(µ) and the corresponding multiplier estimate λ(µ) to the barrier-
transformed problem. It is possible to obtain an analytical expression for this
small problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(5p)

(b) Show that x(µ) and λ(µ) which you obtained in (2a) converge to the optimal
solution and Lagrange multiplier respectively of (QP ). . . . . . . . . . . . . . . . . . . (3p)

(c) Compute ‖x(µ)− x∗‖2, where x∗ denotes the optimal solution to (QP ). Is this
as expected? Comment on the result. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2p)

3. Derive the expression for the symmetric rank-1 update, Ck, in a quasi-Newton update
Bk+1 = Bk + Ck. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (10p)

4. Consider a nonlinear programming problem (NLP ) defined by

(NLP )
minimize ex1 + x1x2 + x2

2 − 2x2x3 + x2
3

subject to −x2
1 − x2

2 − x2
3 + 5 ≥ 0,

aTx + 2 = 0,

where a ∈ IR3 is a given constant. Let x̃ = (0 0 1)T .

(a) Determine a such that x̃ fulfils the first-order necessary optimality conditions
for (NLP ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (6p)

(b) For the value on a which you determined in (4a), determine if x̃ is a local
minimizer to (NLP ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (4p)

5. Consider the optimization problem (P ) defined by

(P )
minimize cTx + 1

2xTHx

subject to xj ∈ {0, 1}, j = 1, . . . , n,

where H is an indefinite symmetric matrix. Problems of this type arise within
combinatorial optimization, and the interest is to find a global minimizer.

One may compute lower bounds on the optimal value of (P ) by considering relaxed
problems.
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(a) One way to relax (P ) is to replace the constraints xj ∈ {0, 1}, j = 1, . . . , n,
with 0 ≤ xj ≤ 1, j = 1, . . . , n. This gives a relaxed problem without discrete
variables, according to

minimize cTx + 1
2xTHx

subject to 0 ≤ xj ≤ 1, j = 1, . . . , n,

Explain way this relaxed problem is not very interesting in practise. . . . . (3p)

(b) An alternative way to create a relaxation to (P ) is to introduce a symmetric
matrix Y and formulate the semidefinite programming problem

(SDP )

minimize cTx + 1
2 trace(HY )

subject to

(
Y x

xT 1

)
�
(

0 0
0 0

)
,

Y = Y T ,
yjj = xj , j = 1, . . . , n.

Show that if the constraint Y = xxT is added to (SDP ), one obtains a problem
which is equivalent to (P ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (7p)
Hint: The following two results, which may be used without proof, might be
useful:

(i) If H is an n× n-matrix and x is an n-vector, then trace(HxxT ) = xTHx.
(ii) If Y is a symmetric n× n-matrix and x is an n-vector, then(

Y x

xT 1

)
�
(

0 0
0 0

)
if and only if Y − xxT � 0.


