
SF2827: Topics in Optimization

An Overview of

Cutting Plane Methods for

Semidefinite Programming

Supervisor:
Anders Forsgren
Department of Mathematics
Royal Institute of Technology
(KTH)
andersf@kth.se

Author:
Luca Furrer

luca.furrer@epfl.ch

May 2009

Abstract

Cutting plane methods are an alternative to interior methods to
solve semidefinite programming (SDP) problems. In this paper, we
are going to present five different cutting plane algorithms for semidef-
inite programming. The methods use relaxations and the semi-infinite
representation of SDP’s. The presented methods are the polyhedral
cutting plane method, the polyhedral bundle method, the block diag-
onal cutting plane method and the primal active set approach. We
present also a generic cutting plane methods which tries to unify all
the other methods.

In the second part the implementation of the polyhedral cutting
plane method into MATLAB is presented followed by some test exam-
ples.

1

CONTENTS CONTENTS

Contents

1 Introduction 3

2 Semidefinite Programming 4

3 Semi-infinite Programming Formulation 6

4 Polyhedral Cutting Plane Algorithm 8

5 Block Diagonal Cutting Plane Scheme 11

6 Polyhedral Bundle Scheme 13

7 Spectral Bundle Method 15

8 Primal Active Set Approach 17

9 Generic Cutting Plane Method 18

10 Conclusion 20

11 Implementation 21

12 Ellipsoid Problem 24

13 Numerical Results and Test Problems 28

2

1 INTRODUCTION

1 Introduction

This paper was written in the context of the course ”Topics in Optimiza-

tion” by Anders Forsgren at the Royal Institute of Technology of Stockholm,

KTH, during the authors exchange year at this school during 2008/2009.

The course treated semidefinite programming, an interesting domain in op-

timization. There existes literature concerning this subject e.g. the surveys

of Laurent and Rendl [9] and Todd [14]. There exist efficient interior point

methods to solve such program but they have problem size limitation and

they are not so good to warm start. However there are also cutting plane

methods available. In Krishnan and Mitchell [8] several are presented.

This paper presents different cutting plane methods for semidefinite pro-

gramming as well as a generic algorithm for the different cutting plane meth-

ods. There exists methods using a relaxation of the transformation to a semi-

infinite program, methods using the idea of bundle methods as well as one

which mimics the simplex method for linear programming. The discussed

methods are the polyhedral methods polyhedral cutting plane method, the

polyhedral bundle method and the non-polyhedral methods spectral bun-

dle method, block diagonal cutting plane method and the primal active set

method. In the conclusion we compare the different methods.

There finds also the description of the implementation of the polyhedral

cutting plane method in MATLAB. This implementation was tested with

some problems in particular an ellipsoid optimization problem.

3

2 SEMIDEFINITE PROGRAMMING

2 Semidefinite Programming

Let us introduce the notations first. If A and B are two symmetric matrices

of size n× n, i.e. A,B ∈ Sn, then . · . denotes the Frobenius inner product.

So

A ·B = tr(AT B) =
n∑

i=1

n∑
j=1

AijBij .

We use also the corresponding norm

||A||F =
√

tr(AT A).

To denote that A is definite or positive semidefinite we use A � 0 respectively

A � 0. So let us consider the following SDP problem

minimize C ·X
subject to A(X) = b, (SDP)

X � 0.

This problem has the dual

maximize bT y
minimize AT y + S = C, (SDD)

S � 0.

with X, S, C ∈ Sn and y, b ∈ Rm, where m is the number of constraints.

Here C and b are given by the problem and X, S and y are the unknown

variables. The notation A stands for a linear operator

A : Sn → Rm

with an adjoint

AT : Rm → Sn.

Those two operators have this form:

A(X) =

 A1 ·X
...

Am ·X


and

AT y =
m∑

i=1

yiAi

4

2 SEMIDEFINITE PROGRAMMING

where Ai, i = 1, . . . ,m, are given problem parameters.

To apply primal-dual based algorithms to solve an semidefinite program-

ming problem, it is often required that strong duality holds, i.e. that the

optimal objective value of (SDP) is equal to the one of (SDD).

Theorem 1. If the set of solutions to (SDP) and the set of solutions to

(SDD) such that S � 0 are non-empty then the duality gap is zero, i.e. the

optimal values of (SDP) and (SDD) are equal.

A proof of this theorem can be found in Todd [14, Chapter 4]. The

following two theorems are direct consequences of the one before.

Theorem 2. If the set of solutions to (SDP) such that X � 0 and the set

of solutions to (SDD) are non-empty then the duality gap is zero, i.e. the

optimal values of (SDP) and (SDD) are equal.

Theorem 3. If (SDP) and (SDD) have both strictly feasible solutions then

strong duality holds

The last two theorems are direct consequences of Theorem 1.

To read more about semidefinite programming in general there existe

some literature among others Laurent and Rendl [9] and Todd [14]. For

more information for interior methods there finds among others the papers

of Helmberg, Rendl, Vanderbrei and Wolkowicz [3], Monteiro [11] and Zhang

[16].

5

3 SEMI-INFINITE PROGRAMMING FORMULATION

3 Semi-infinite Programming Formulation

Sometimes it would be interesting to avoid the notation of positive semidef-

inite in a (SDP) problem. Since we have that X � 0 is equivalent to

dT Xd = ddT ·X ≥ 0 ∀d ∈ Rn

Therefore it is possible to formulate (SDP) and (SDD) as a semi-infinite

programs.
minimize C ·X
subject to A(X) = b (SIP)

dT Xd ≥ 0 ∀||d||2 = 1

maxmimize bT y
subject to AT y + S = C (SID)

dT Sd ≥ 0 ∀||d||2 = 1

with d ∈ Rn. This subject and the solutions of such problems is discussed in

Krishnan and Mitchell [7]. To solve such problems we present to theorems

which are both found in [7], where one find also their proofs which are

omitted in this document.

Theorem 4. If the solution of (SIP) is finite and the objective value of

(SIP) and (SID) are the same. Then (SID) has a finite discretization (SIR)

with the same optimal value.

Hence it is possible to find a subset of vectors di, i = 1, . . . ,m, such that

we obtain linear program to solve.

maxmimize bT y
subject to AT y + S = C (SIR)

dT
i Sdi ≥ 0 i = 1, . . . ,m

The choice of vectors is not obvious but there exists another theorem which

reduces the number of vectors needed.

Theorem 5. If there exists an discretization of (SID) which has the same

objective value as (SID) then there exists a discretization (SIR) with m ≤ k

where m is the size of the vector set and k is the number of constraint

matrices Ai.

6

3 SEMI-INFINITE PROGRAMMING FORMULATION

So it is possible to find a (SIR) which is a linear problem and has limited

number of constraints but it is not obvious how to find the set. Some ap-

proaches are presented in the next chapters which discuss several algorithms

to solve semidefinite programming problems with a cutting plane approach.

7

4 POLYHEDRAL CUTTING PLANE ALGORITHM

4 Polyhedral Cutting Plane Algorithm

As first algorithm we consider an algorithm called the polyhedral cutting

plane algorithm. The polyhedral cutting plane method was introduced to

semidefinite programming by Krishnan and Mitchell [5] as well as by Gold-

farb [1]. Actually Goldfarb considers conic programming, where semidefinite

programming is a special case.

In order to use this method we add two assumptions to basic semidefinite

programming problem.

Assumption 1

A(X) = b ⇒ tr(X) = a for some constant a.

Assumption 2 (SDP) and (SDD) both have strictly feasible solutions.

This means that {X ∈ Sn : A(X) = b, X � 0} and {(y, S) ∈ Rk×Sn :

Ay + S = C,S � 0} are non-empty.

The first assumption allows us to transform (SDD) to an eigenvalue op-

timization problem. This assumption is required for the bundle method

to create linear constraints. The second assumption assures that (SDP)

and (SDD) have an optimal solution and that the optimal values are equal.

Therefore we have also a duality gap equal to zero.

As already discussed in section it is possible to reformulate (SDD) to a

semi-infinite program (LDD).

maximize bT y
subject to ddT · (C −AT y) ≥ 0 ∀d (LDD)

We want to consider a relaxation of this problem. We consider a finte set

of variables {di, i = 1, . . . ,m} at the place of d. Hence we get the following

problem:

maximize bT y
subject to did

T
i · (C −AT y) ≥ 0 for i = 1, . . . ,m (LDR)

A reason why we work with with the relaxation of (SDD) instead of

(SDP) is that this problem has m variables but (SDP) leads to n(n − 1)/2

variables and most of the time we have that m < n(n− 1)/2.

8

4 POLYHEDRAL CUTTING PLANE ALGORITHM

When we consider the constraints of (LDR), we find

did
T
i · AT y = did

T
i ·

 k∑
j=1

yjAj

 =
k∑

j=1

yjd
T
i Ajdi

and we see that the constraints are equivalent to

k∑
j=1

yjd
T
i Ajdi = dT

i Cdi

And therefore we find the the dual of (LDR)

minimize
m∑

i=1

dT
i Cdixi

subject to
m∑

i=1

dT
i Ajdixi = bj ∀j = 1, . . . ,m

x ≥ 0

which can be rewritten as the following problem

minimize C ·
m∑

i=1

xidid
T
i

subject to A

(
m∑

i=1

xidid
T
i

)
= b (LPR)

x ≥ 0

The following lemma helps us to compare the solution of (LPR) to the

solution of (SDP).

Lemma 1. A feasible solution x to (LPR) gives a feasible solution X to

(SDP)

Proof. Let X =
∑m

i=1 xidid
T
i . From (LPR) we have that X satisfies the

condition AX = b. So we have also to prove that X is semi-definite positive.

dT Xd = dT

(
m∑

i=1

xidid
T
i

)
d =

m∑
i=1

xi(dT
i d)2 ≥ 0

for all d since x ≥ 0.

With help of this lemma, we can deduce an upper bound for the solution

of (SDP) with help of the optimal value of (LDR). So we get the following

algorithm:

9

4 POLYHEDRAL CUTTING PLANE ALGORITHM

Algorithm 1. 1. (Initialization) Choose an initial set of constraints for

(LDR) and the termination parameters ε1, ε2 > 0. Set the current

lower and upper bounds to LB = −∞ and UB = ∞. Choose also TOL

as the tolerance to solve (LDR) and (LPR) as well as µ to update the

tolerance if wanted.

2. In the k’th iteration, obtain a solution yk to the problem (LDR) by

using an interior method and tolerance TOL. Update the upper bound

UB = min{UB, bT yk}.

3. Compute λ = |λmin(C − AT yk)| and a corresponding eigenvector d.

Update LB = max{LB, bT yk +λa} where a comes from assumption 1.

If |LB − UB| ≤ ε1 or λ ≤ ε2, got to step 5.

4. Add the constraint

ddT · AT y ≤ ddT · C

to (LDR). Set k = k + 1 and TOL = µTOL

5. The current solution (xk, yk) for (LDR) and (LPR) gives an optimal

solution X for (SDP) and y for (SDD) (see lemma 1).

Note It is also possible to add s constraints to (LDR). In this case use

the s most negative eigenvalues and the corresponding eigenvector. But in

this case it is sometimes necessary to drop some constraints. See Krishnan

[6].

10

5 BLOCK DIAGONAL CUTTING PLANE SCHEME

5 Block Diagonal Cutting Plane Scheme

The non-polyhedral block diagonal cutting plane algorithm is similar to the

algorithm discussed in section 4. Actually this algorithm can nearly be

considered as an generalization of the polyhedral cutting plane algorithm.

This is not exactly the case but it is possible to find the connection of those

two algorithms. It is discussed in Oskoorouchi and Goffin [12]. There is also

a short overview in Krishnan and Mitchell [8].

Let us denote the multiplicity of λmin(C −AT y) by r. The main idea is

now to add the following semidefinite constraints

m∑
i=1

yi(DT AiD) � (DT CD),

where D ∈ Rn×r, with DT D = Ir, whose columns form an eigenbasis for the

eigenspace of C −AT y with eigenvalue λmin(C −AT y), instead of

m∑
i=1

yi(dT
j Aidj) � (dT

j Cdj) j = 1, . . . , r

to the considered problem. So actually dj is included as a row in the matrix

D. So we can form our problem.

maximize bT y (LDR′)

subject to
m∑

i=1

yi(DT
j AiDj) � (DT

j CDj), j = 1, . . . , k

The dual of the changed relaxation dual, and therefor the primal of the

changed problem is:

minimize C ·

(
k∑

i=1

DiViD
T
i

)

subject to A

(
k∑

i=1

DiViD
T
i

)
= b (LPR′)

Vi � 0, i = 1, . . . , k.

With the knowledge of (LPR’) and (LDR’) it is possible to formulate the

algorithm.

11

5 BLOCK DIAGONAL CUTTING PLANE SCHEME

Algorithm 2. 1. Choose the initial set of constraints for (LDR’), the

tolerance TOL to solve (LDR’) and (LPR’) and the termination pa-

rameters ε1 and ε2 > 0. Set the lower and upper bound to −∞ respec-

tively ∞. If desired choose an update parameter µ for the tolerance.

2. Find an approximate solution with tolerance TOL to (Xk, yk) to (LDR’)

and (LPR’).

3. Compute λ = λmin(C − AT yk) and an orthonormal matrix Dk ∈
Rn×rk

. rk is the multiplicity of the eigenvalue. Update LB = max{LB, bT yk+

λa} and UB = min{UB, bT yk}.

4. If |UB−LB| ≤ ε1 or |λ| ≤ ε2 then we have found an optimal solution.

Stop. Otherwise add the following constraint to (LDR’)

m∑
i=1

yi(DT
k AiDk) � (DT

k CDk).

5. Set k = k + 1, TOL = µTOL and go to step 2.

One may recognise that this algorithm is the same as polyhedral cutting

plane algorithm of section 4 as long the multiplicity of λ is one. So one may

see the connection of those two algorithms. It is also possible to get (Xk, yk)

with help of the analytic center. This is well discussed in [12].

12

6 POLYHEDRAL BUNDLE SCHEME

6 Polyhedral Bundle Scheme

Another way to improve the polyhedral cutting plane algorithm is using

proximal bundle as for example presented in Kiwiel [4]. We assume again

that Assumptions 1 and 2 hold.

The idea is to maximize bT y − u/2||y − yk|| instead of maximizing bT y.

With this method we penalize big steps away from the current iterate yk.

With a small u we penalize big steps less than with a big u. If u is too big,

the algorithm is forced to perform steps which are close to null steps, which

is not that useful. There are many proposed choices for u. But all of them

keep the solution bounded.

By changing the objective function as describen get a changed version

of (LPR) from section 4.

maximize bT y − u
2 ||y − ŷ||2

subject to did
T
i · (C −AT y) ≥ 0 for i = 1, . . . ,m (BD)

There is only a change in the objective function compared to (LPR). The

constraints are staying the sames.

We get also the Lagrangian dual

minimize 1
2u ||b−A(X)||2 − bT ŷ − (C −Atŷ) ·X

subject to X =
k∑

i=1

xidid
T
i (BP)

k∑
i=1

xi = 1

xi ≥ 0, i = 1, . . . , k.

Due to strong dualtiy (BD) and (BP) have the same objective value. There-

fore we have the relation

y = ŷ +
1
u

(b−A(X)). (1)

Algorithm 3. 1. Let y1 ∈ Rm, let p be the normalized eigenvector cor-

responding to λmin(C − AT y1). Also choose the weight u > 0, an

improvement parameter ν ∈ (0, 1) and finally a termination parameter

ε > 0

13

6 POLYHEDRAL BUNDLE SCHEME

2. At the k’th iteration, compute Xk+1 from (BP) and y with help of

equation (1) where ŷ = yk. Also let fXk+1(yk+1) = bT yk+1 + (C −
Atyk) ·Xk+1

3. If

fXk+1(yk+1) ≤ ε

stop.

4. Compute f(yk+1) and the eigenvector pk+1 corresponding to λmin(C−
AT yk+1).

5. If

f(yk+1) ≥ ν(fXk+1(yk+1)

then perform a serious step, i.e. ŷk+1 = yk+1. Else perform a null

step, i.e. yk+1 = yk

6. Let k = k + 1 and return to step 2.

14

7 SPECTRAL BUNDLE METHOD

7 Spectral Bundle Method

In this section we discuss the spectral bundle method due to Helmberg and

Rendl [2]. Krishnan and Mitchell [8] also discuss this method briefly. It also

uses the bundle method. But the big difference is that we transform the

problem to a eigenvalue optimization problem and solve it. It is considered

to be a good solver.

The considered problem is (SDP) with dual (SDD). We assume also that

strong duality holds and therefore for any optimal solution X∗ to (SDP) and

any optimal solution Z∗ to (SDD) it holds that

X∗Z∗ = 0.

Further we assume that assumption 2

A(X) = b ⇒ tr(X) = a, a > 0,

holds.

Actually we can add tr(X) = a as a redundant constraint to (SDP).

From this new problem with the added constraint we get a new dual (SDD’)

to (SDP).

maximize aλ + bT y
subject to Z = AT y + λI − C � 0 (SDD′)

Since we have a > 0 X cannot be zero at the optimum and therefore any

optimal Z must be singular. Hence all dual optimal solutions Z satisfy

0 = λmin(−Z) which leads to λ = λmin(C − AT y). Thus it follows that

(SDD) and (SDD’) are equivalent to the problem

min aλmin(C −AT y) + bT y.

To avoid complicated and inconvenient notations we set a = 1. And we get

a eigenvalue problem

minλmin(C −AT y) + bT y (E)

which is a well know und studied problem. We are mainly interested in the

function

f(y) = λmin(C −AT y) + bT y

15

7 SPECTRAL BUNDLE METHOD

Now we want to majorize f by f̂ . We set

f̂(y) = min{(C −AT y) ·W : W ∈ Ŵ}

where

Ŵ = {αW + PV P T : α + tr(V) = 1, α ≥ 0, V � 0}

with P ∈ Rn×r and P T P = I and W � 0 and tr(W) = 1.

Using the idea of proximal bundle we get the algorithm. The variable u

is at free choice.

Algorithm 4. 1. (Initialization) Start with an initial point y0 ∈ Rm, a

normalized eigenvector v0 for λmin(C − AT y), an ε > 0 for termina-

tion, an improvement parameter ν ∈ (0, 1
2), a weight u > 0. We set as

well k = 0, x0 = y0, P 0 = v0 and W
0 = v0v0T

2. In the k’th iteration solve

max
W∈cW k

(C −Axk) ·W k + bT xk − 1
2u

(A(W k)− b) · (A(W k)− b)

to get yk+1 = xk+ 1
u(b−A(W k+1)) Decompose V ∗ into V ∗ = Q1Λ1Q

T
1 +

Q2Λ2Q
T
2 . Compute

W
k+1 =

1
α∗ + tr(Λ2)

(
α∗W

k + P kQ2Λ2(P kQ2)T
)

.

3. Compute λmin(C −AT yk+1) and the corresponding eigenvector vk+1.

Compute P k+1 by searching for the orthonormal basis to P kQ1v
k+1

4. (Termination) If f(xk)− f̂k(yk+1) ≤ ε then stop.

5. If

f(yk+1) ≤ f(xk)− ν(f(xk)− f̂k(yk+1))

then set xk+1 = yk+1. Otherwise set xk+1 = xk

6. k = k + 1 and go to step 2.

One may see that the similarities between this algorithm and the poly-

hedral bundle algorithm. But it is also obvious that the problems to solve

in the steps are different.

16

8 PRIMAL ACTIVE SET APPROACH

8 Primal Active Set Approach

There exists also a primal active set approach to solve semidefinite program-

ming problems as a sequence of smaller SDP’s. As the simplex method for

linear programming it uses the notation of extrem points. Unfortunately the

number of documentations on this algorithm is rather small and unavailable,

therefore we present this algorithm as it has been done by Mitchell and Kr-

ishnan in [8]. There are some similarities to the other algorithms but the

simplex approach let it move a little bit away from the other algorithms.

Algorithm 5. 1. Consider an extreme point solution X1 = P 1V 1P 1T .

Set the lower and upper bound to −∞ respectively ∞ and choose an

ε > 0 for precision.

2. In the k’th iteration, choose a subset of m independent equations from

S̄11 = P T
1 (C −AT y)P1 = 0

S̄12 = P T
1 (C −AT y)P2 = 0

Solve the resulting system S̄B = 0 for yk+1

3. If Sk+1 = (C − AT yk+1) � 0, stop. Otherwise update P̄ k+1 to be the

columns of S̄B = 0. Compute the normalized eigenvector of λmin(Sk+1)

pk+1. Set P̄ k+1 = orth|P̄ k+1, pk+1|. Update LB = max{LB, bT yk +

λa} and UB = min{UB, bT yk}. If |UB − LB| < ε stop.

4. Solve

minimize (P̄ k+1T
CP̄ k+1) · V

subject to (P̄ k+1T
AiP̄

k+1) · V = bi i = 1, . . . ,m
V � 0

Let V k+1 = Rk+1
1 Mk+1Rk+1

1

T
with Mk+1 � 0. Set P k+1

1 = P̄ k+1Rk+1
1

and Xk+1 = P k+1
1 Mk+1P k+1

1

T
.

5. If Xk+1 is not an extrem point, use the Algorithm 1 in chapter 4 of

Pataki [13] and return to step 1.

17

9 GENERIC CUTTING PLANE METHOD

9 Generic Cutting Plane Method

There have been several cutting plane methods presented before in this

paper. Now we want to describe a generic cutting plane method as done in

Krishnan and Mitchell [8]. We assume that Assumptions 1 and 2 hold. For

simplicity we consider the special case of Assumption 1 that

A(X) = b ⇒ tr(X) = 1

There is on one side the semi-infinte approach as discussed in Section 4

where we transform (SDD) to this semi-infinite problem

max bT y
s.t. ddT · Ay ≤ ddT · C ∀||d||2 = 1 (LDM).

The advantage of the (LDM) formulation is that we can reduce the number

of involved variables.

We construct a relaxation of (LDM) by considering a discretization of

||d||2 = 1 by a finite set of vectors {d1, i = 1, . . . , k}. We obtain the following

discretization of (LDM):

max bT y
s.t. did

T
i · Ay ≤ did

T
i · C for i = 1, . . . , k (LDR)

with the dual

min C ·

(
k∑

i=1

xidid
T
i

)

s.t. A

(
k∑

i=1

xidid
T
i

)
= b (LPR)

We used as well the bundle methods. So finally we get a generic cutting

plane algorithm.

Algorithm 6. 1. Choose an inital point ŷ, an initial finite set D = {Di}
and a scalar u ≥ 0.

2. Solve the subproblem

maximize λ + bT y − u

2
||y − ŷ||2

subject to DT
i (C −AT y)Di � λI, i ∈ D

to get (y∗, λ∗).

18

9 GENERIC CUTTING PLANE METHOD

3. If S∗ = (C − AT y∗) � 0, we are optimal. Stop. Otherwise find

D ∈ Rn×r, with r ≤
√

2m such that DT (C −AT y∗)D � 0.

4. Add D to D or aggregate D into D

5. Set ŷ = y∗ and return to step 2

The vector λ in the subproblem refers to tr(X) = 1. One recognizes that

for u = 0 we get to the algorithms which do not use the proximal bundle

methods.

19

10 CONCLUSION

10 Conclusion

We presented several cutting plane methods which are the polyhedral cutting

plane method, the polyhedral bundle method, the spectral bundle method,

the block diangonal cutting plane method and the primal active set method.

This methods are all working with relaxations of (SDP) and (SDD). We saw

that they have all an algorithm which is similaire and presented it in Section

2.

But we did not compare the different algorithms. The algorithm in

Section 4 can be implemented in polynomial time. There are computational

results for this algorithm available in [5] and [6]. This algorithm can be

compared with interior point methods even if his convergence is rather poor.

Algorithm 2 can also be implemented in polynomial time. After [8]

the spectral bundle algorithm described in Section 7 showed some good re-

sults for large problems which could hardly been solved by interior methods.

Hence it is a interesting algorithm.

The method in Section 1 tries to apply the simplex method to semidefi-

nite programming but it does not find always directly an extrem point and

therefore it is necessary to use another algorithm to find them. The compu-

tational performance of this algorithm is apparently still under discussion.

There are some cutting plane algorithms which are interesting in view of

computational performance. It is possible to warm start them and at least

one is very efficient for large semidefinite programs.

20

11 IMPLEMENTATION

11 Implementation

In order to solve semidefinite programming problems with help of a com-

puter, we decided to implement a cutting plane method. The chosen al-

gorithm was the polyhedral cutting plane algorithm which is presented in

Chapter 4. The algorithm was implemented in MATLAB with help of the

modelling language YALMIP [10], which simplifies the handling of con-

straints and objective function and uses then a external solver such as the

implemented solver of MATLAB or of another solver such as CDD. YALMIP

is free of charge and openly distributed and therefore easy to access.

To implement the polyhedral cutting plane algorithm we followed Al-

gorithm 1 with some slight changes which appeared due to problems dur-

ing the implementation. The corresponding function in MATLAB is called

function [X,y]=cuttingplane(C, A, b, epsilon1, epsilon2). Where

the returned values are corresponding to the primal and dual solution of

(SDP) and (SDD). The input variables C,A and b are as in (SDP). epsilon1

and epsilon2 are the values for the stopping conditions denoted as ε1 and

ε2 in the algorithm.

The function uses beyond the normal MATLAB functions

• YALMIP

• function Ay=opAt(A,y).

Hence it is necessary to have YALMIP installed on the computer to use

cuttingplane. The file opAt.m, which is part of this code for the algorithm,

should also be saved in the same directory as cuttingplane.m. YALMIP is

used to solve (LDR) which is a main step of the algorithm and was chosen

because it allows to handle the constraints for a linear programming problem

in a simple way which corresponds to the notation in the algorithm. The

disadvantage is that it takes YALMIP some time to translate the constraints

into the form required by the solver. But this is compensated that we do

not have to this by ourself. opAt is a small function that calculates AT y.

Due to a unknown reason the stopping condition based on the lower

and upper bounds as described in this document, where not working and

the |UB − LB| did not converge to zero. Therefore this stopping condition

21

11 IMPLEMENTATION

was changed to the condition |yk − yk−1| ≤ ε1. The stopping condition on

λ was not concerned. The algorithm seem to work well with this changed

condition.

Another small change is that instead of let the user define the tolerance

with which (LDR) is solved, the standard value of YALMIP was used and

therefore it is also not possible to reduce the tolerance for solving (LDR).

One may remember that we made an assumption in order to use the

polyhedral cutting plane algorithm which was

A(X) = b ⇒ tr(X) = a for some constant a.

In the implementation it was avoided to pass this a with the input variables

to avoid confusion. Since a was mainly used in the stopping condition based

on the lower and upper bound which was removed, this did not influence the

implementation of the algorithm. It is also possible to solve problems which

do not have a constant trace and therefore do not fulfill the assumption.

With the problems the algorithm was tested there appeared no problems

with the fact, that the trace is not supposed to be constant. However it can

not be totally assured that this is the case for all possible SDP-problems.

But hence the trace of X gets approximated during the repetitions of the

algorithm and it converges, it should work for a big part of the problems.

It can also happen that YALMIP returns NaN as a value of the optimal

solution by solving (LPR). Since it is not possible to compute for exam-

ple eigenvalues of matrices containing NaN, those are replaced by 0. This

avoids problems in the first iterations where the problem has not yet many

constraints.

Another problem which raised have been problems that leaded to a infi-

nite solution for (LPR). The attempt to solve this problem by creating new

constraints to avoid this, did not worked out well. The idea was to add the

corresponding eigenvector to the maximal eigenvalue

λmax

 m∑
j=1

rjAj

 ,

where r is the descent direction for (LDR), to the set of constraints. But

as already said this did not sove the problem. Therefore this procedure was

22

11 IMPLEMENTATION

not added to the algorithm. Instead the algorithm stops and returns the

problem of indicated by the solver, e.g. unconstrained problem.

The source code of the implementation of the polyhedral cutting plane al-

gorithm can be found on https://documents.epfl.ch/users/f/fu/furrer/

www/cuttingplane/.

23

12 ELLIPSOID PROBLEM

12 Ellipsoid Problem

In this section a semidefinite programming problem which is used to test

the implementation of the polyhedral cutting plane algorithm is presented.

This problem comes from Vandenberghe and Boyd [15, p. 58-59]. It is a

geometrical problem.

Suppose that we have k ellipsoids ε1, . . . , εk given. We want find the ball

with minimal radius containing all ellipsoids.

The ellipsoids can be described with help of quadratic functions

fi = xT Aix + 2bT
i x + ci, i = 1, . . . , k,

where εi = {x|fi ≤ 0}. It is possible the express the fact that one ellipsoid

contains an in a matrix form. If we have the ellipsoids ε = {x|f ≤ 0} and

ε̃ = {x|f̃ ≤ 0} with the corresponding functions

f = xT Ax + 2bT x + c and f̃ = xT Ãx + 2b̃T x + c̃,

then ε contains ε̃ if and only if there exists a τ ≥ 0 such that[
A b
bT c

]
� τ

[
Ã b̃

b̃T c̃

]
Now since a ball is also an ellipsoid it can be described as well in the form

used above. The ball S can be represented by

f = xT x− 2xT
c x + γ.

Therefore for a ball S which contains all ellipsoids ε1, . . . , εk, there must

exist τ1, . . . , τk ≥ 0 such that[
I −xc

−xc γ

]
� τi

[
Ai bi

bT
i ci

]
for i = 1, . . . , k. (2)

Since we want to minimize the ball’s radius r =
√

xT
c xc − γ, we use r2 ≤ t,

which can be presented in a matrix inequality[
I xc

xT
c γ

]
� 0, (3)

and we minimize t.

24

12 ELLIPSOID PROBLEM

Gathering all this information together we get the following semidefinite

program

minimize t

subject to
[

I −xc

−xc γ

]
� τi

[
Ai bi

bT
i ci

]
for i = 1, . . . , k

τi ≥ 0, i = 1, . . . , k,[
I xc

xT
c γ

]
� 0.

In this program the variables are xc, τ1, . . . , τk, γ and t.

But this problem in not in standard form which must be known to solve

it with help of our implemented cutting plane solver. Therefore we are going

to transform this problem into standard form.

First one may recognize that it is possible to rewrite (2) in one block

diagonal matrix inequation. In the same manner we can add the other

constraints to this matrix to get one huge blockdiagonal matrix inequation.

Then we need to separate the variables and constants in (2) and (3).

Since our semidefinite program is closer to the dual form then the primal

form we want to transform it into the form

maximize bT y

minimize
m∑

i=1

yiAi � C.

Therefore we separate the the variables and the corresponding matrices.

For example (2) becomes

−xc1

[
0 e1

eT
1 0

]
− · · · − xcn

[
0 en

eT
n 0

]
+ γ

[
0 0
0 1

]
+

+t

[
0 0
0 0

]
− τ1

[
A1 b1

bT
1 c1

]
− · · · − τk

[
Ak bk

bT
k ck

]
�

[
−I 0
0 0

]
.

Since the notation for ellipsoids in a n-dimensional space is not convenient

to write down we are going to consider now the 2-dimensional space. It is

possible to do the same thing without any problems for higher dimensions.

Let us set

y =
[

xc1 xc2 γ t τ1 · · · τk

]T
Now it is necessary to find the corresponding matrices denoted with Bi since

Ai is already used. The matrix corresponding to xc1 is a block diagonal

25

12 ELLIPSOID PROBLEM

matrix with [
0 −e1

−eT
1 0

]
for the first k blocks at the beging corresponding to (2), then a block of k×k

zero-matrix and then the matrix of the beging again. The matrix for xc2 is

the same except e1 is switched to e2.

For γ there are first k matrices of the form[
0 0
0 1

]
,

followed also k × k zero-matrix and at the end, there is[
0 0
0 −1

]
.

This block diagonal matrix is multiplied with γ. The matrix which is mul-

tiplied with t has the same size as the other and consists out of zeros except

for the last block which is [
0 0
0 −1

]
.

The matrices corresponding to τi, i = 1, . . . , k are for the first k block zero

except the ith block which is

−
[

Ai bi

bT
i ci

]
.

The next block is zero except for the ith diagonal element which is -1. The

last block is 0.

The C matrix is [
−I 0
0 0

]
for the first k blocks, then follows a k × k zero-matrix and at the last block

is [
I 0
0 0

]
.

The only component missing is now b, which is a zero-vector except for the

4 component which is corresponding to t. This component is −1 since t is

minimized but we are in dual form which must be maximized.

Then we have a problem in the form

26

12 ELLIPSOID PROBLEM

maximize bT y

minimize
m∑

i=1

yiBi � C,

where Bi are the matrices introduced before. Hence this problem can also

be written in the primal form

minimize C ·X
subject to Bi ·X = bi for i = 1, . . . , k,

X � 0.

So we have transformed the ellipsoid problem into standard form. It is now

possible to test the implemented algorithm on it.

27

13 NUMERICAL RESULTS AND TEST PROBLEMS

13 Numerical Results and Test Problems

In this chapter two different tests of the algorithm are presented: one small

example and ellipsoid problem example. The algorithm was tested with

YALMIP using the standard solver of MATLAB for linear programming

linprog. First we consider a small semidefinite programming problem with

constant trace

minimize
[

2 1
1 5

]
·X

subject to I ·X = 2,[
1 0
0 1

]
·X = 1.

We used ε1 = ε2 = 10−5 as precision parameter. With this setting a result

was found in 8 iterations. The result is

X =
[

1.7071 −0.7071
−0.7071 0.2929

]
.

This result result consists with the optimal value obtained on a other

way. This was just a small problem to test if the algorithm is working. To

test it on a bigger problem we are going to consider the an ellipsoid problem

as presented in Chapter 12. Since this is a geometrical problem it is rather

easy to check the obtained result on a graphical way.

We consider the following ellipses in the the 2-dimensional space:

A1 =
[

2 1
1 3

]
b1 =

[
−2
8

]
c1 = 20

A2 =
[

2 −0.1
−0.1 1.5

]
b2 =

[
1
−5

]
c2 = −10

A3 =
[

1 0.1
0.1 1

]
b3 =

[
5
4

]
c3 = 30

A4 =
[

1 0
0 1

]
b4 =

[
6
−1

]
c4 = 36

A5 =
[

1 0
0 1

]
b5 =

[
−1
7

]
c5 = 48

(4)

The goal is to find the circle with minimal radius which contains all

the ellipses. This problem can be expressed as in a standard semidefinite

programming form. When we solve the problem with cuttingplane we get

a result. The optimal solution for the primal problem is not particularly

28

13 NUMERICAL RESULTS AND TEST PROBLEMS

interesting since the basic problem is formulated in the dual form. The

result for the dual problem is

y =
[
−0.15 −0.48 −64.29 64.54 1.15 1.27 2.83 2.41 5.69

]
.

The solution can be presented graphically as done in Figure 1. The green

ellipses are corresponding to (4). The red circle is the optimal solution. One

Figure 1: Solution of the ellipsoid problem

can check graphically that the red circle is the optimal solution and the

algorithm works also for problems when the assumption for a constant trace

is dropped. This solution was found performing 45 iterations. The stopping

parameters have been ε1 = ε2 = 10−5

By analyzing the time spend on during the process one recognizes that a

lot of the time is used by functions of YALMIP especially by solvesdp. Ac-

tually the time for solving the problem was rather high. This is mainly due

to the reformulation of the problem such that it can be solved by linprog.

Therefore the algorithm would probably become a lot faster formulating the

29

13 NUMERICAL RESULTS AND TEST PROBLEMS

problem in another way such that it takes less time to transform it. It must

also be mentioned that linprog is probably not the best sover available and

there could be some gains by using another one.

Other improvements of the algorithm have already discussed in Chapter

4. For example one may consider to add more than one constraint to the

set of all constraints during an iteration.

After all, the algorithm is working good but it could be optimized. There

are some possible improvements. One should also not forget that this al-

gorithm is not considered to be the best of the presented algorithms but it

contains the main idea of a cutting plane approach to semidefinite program-

ming.

30

REFERENCES REFERENCES

References

[1] D Goldfarb. The simplex method for conic programming. Technical

report, CORC, Columbia University, 2002.

[2] C. Helmberg and F. Rendl. A spectral bundle method for semidefinite

programming. SIAM J. Optim., 10(3):673–696 (electronic), 2000.

[3] Christoph Helmberg, Franz Rendl, Robert J. Vanderbei, and Henry

Wolkowicz. An interior-point method for semidefinite programming.

SIAM J. Optim., 6(2):342–361, 1996.

[4] Krzysztof C. Kiwiel. Proximity control in bundle methods for con-

vex nondifferentiable minimization. Math. Programming, 46(1, (Ser.

A)):105–122, 1990.

[5] K Krishnan and J E Mitchell. A linear programming approach to

semidefinite programming problems. Technical report, Department of

Mathematical Science, Rensselaer Polytechnic Instituite, 2001.

[6] Kartik Krishnan. Linear programming (LP) approaches to semidefi-

nite programming (SDP) problems. PhD thesis, Rensselaer Polytechnic

Institute, 2001.

[7] Kartik Krishnan and John E. Mitchell. Semi-infinite linear program-

ming approaches to semidefinite programming problems. In Novel ap-

proaches to hard discrete optimization (Waterloo, ON, 2001), volume 37

of Fields Inst. Commun., pages 123–142. Amer. Math. Soc., Providence,

RI, 2003.

[8] Kartik Krishnan and John E. Mitchell. A unifying framework for several

cutting plane methods for semidefinite programming. Optim. Methods

Softw., 21(1):57–74, 2006.

[9] Monique Laurent and Franz Rendl. Semidefinite programming and

integer programming. In K. Aardal, G. Nemhauser, and R. Weismantel,

editors, Discrete Optimization, volume 12 of Handbooks in Operations

Research and Management Science, pages 393–514. Elsevier B.V., 2005.

31

REFERENCES REFERENCES

[10] J. Löfberg. Yalmip : A toolbox for modeling and optimization in MAT-

LAB. In Proceedings of the CACSD Conference, Taipei, Taiwan, 2004.

[11] Renato D. C. Monteiro. Primal-dual path-following algorithms for

semidefinite programming. SIAM J. Optim., 7(3):663–678, 1997.

[12] Mohammad R. Oskoorouchi and Jean-Louis Goffin. The analytic cen-

ter cutting plane method with semidefinite cuts. SIAM J. Optim.,

13(4):1029–1053 (electronic), 2003.

[13] Gábor Pataki. Cone-LP’s and semidefinite programs: geometry and a

simplex-type method. In Integer programming and combinatorial op-

timization (Vancouver, BC, 1996), volume 1084 of Lecture Notes in

Comput. Sci., pages 162–174. Springer, Berlin, 1996.

[14] M. J. Todd. Semidefinite optimization. Acta Numer., 10:515–560, 2001.

[15] Lieven Vandenberghe and Stephen Boyd. Semidefinite programming.

SIAM Rev., 38(1):49–95, 1996.

[16] Yin Zhang. On extending some primal-dual interior-point algorithms

from linear programming to semidefinite programming. SIAM J. Op-

tim., 8(2):365–386 (electronic), 1998.

32

