
Solution to Exam in SF2832 Mathematical Systems Theory
14.00-19:00, January 11, 2022

Examiner: Xiaoming Hu, tel. 0707967831.

Allowed material: Anders Lindquist & Janne Sand, An Introduction to Mathematical
Systems Theory, Per Enqvist, Exercises in Mathematical Systems Theory, your own class
notes, and β mathematics handbook.

Note! Your personal number must be stated on the cover sheet. Number your pages and
write your name on each sheet that you turn in!

You need 40 points credit to pass the exam. The other grade limits are listed on the
course home page.
The sub-problems in each problem are listed by the ascending order of
difficulty whenever it is possible.

Matrix notation: We use A(t) to denote a time-varying matrix and A to denote a
constant matrix.

1. (20p) Determine if each of the following statements is true or false. You must
motivate your answers. No motivation no point.

(a) Consider ẋ = Ax where x ∈ Rn and assume AT = −A, then x = 0 is never
asymptotically stable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (6p)

Answer: True, since ‖x(t)‖ = ‖x(0)‖.
(b) Consider ẋ = Ax+Bu, y = Cx, where x ∈ Rn, u ∈ Rm, y ∈ Rp.

b1. Assume that rank A < n− 1. Then m ≥ 2 if (A,B) is controllable. . . (3p)

Answer: True, since for m = 1 a necessary condition for controllability is that
rank A ≥ n− 1.

b2. Let m = p = 1, we have C(sI − A)−1B = n(s)
d(s) , where d(s) = det (sI − A).

If n(s) and d(s) do not share any common root then (A,B,C) is minimal. (3p)

Answer: True, since δ(R(s)) = n in this case.

(c) Assume (A,B) is controllable and (C,A) is observable. Then (C,A + BK) is
also observable for any K. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (4p)

Answer: False, for example in the siso case we can find K such that there is
zero/pole cancellation.

(d) Consider the optimal control problem for ẋ = Ax+Bu, x(0) = x0:

min
u

∫ ∞
0

(xTCTCx+ uTRu)dt,

where R > 0. If (A,B) is not controllable, then the optimal control does not
exist. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (4p)

Answer: False. A counter example is that B = 0, and A is a stable matrix.
Then u = 0 is obviously the optimal control.
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2. (25p) Consider :

ẋ = Ax+ bu (1)

y = cx,

where x ∈ R3, u ∈ R, y ∈ R, and the transfer function is

r(s) = c(sI −A)−1b =
s2 + s− 2

(s2 + 2s+ α)(s+ 1)
,

where α is a constant. Assume b =
[
0 0 1

]T
.

(a) Find matrices A and c. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5p)

Answer: A is in the standard controllable form and the last row is (−α − (2 +
α) − 3), c = (−2 1 1).

(b) Is your (c, A) observable? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (6p)

Answer: Observable if α 6= −3, 0.

(c) Give the condition on α such that ‖eAtx0‖ ≤ M‖x0‖ for all x0 ∈ R3 and all
t ≥ 0, where M is a positive constant. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (4p)

Answer: α ≥ 0.

(d) Find u(t) = Kx that makes D = {x ∈ R3 : cx = 0} invariant, i.e., cx(t) =
0,∀t ≥ 0 if cx(0) = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3p)

Answer: y = −2x1 + x2 + x3 ≡ 0 implies that ẏ ≡ 0 which gives −2x2 + x3 −
αx1 − (2 + α)x2 − 3x3 + u = 0. From this we obtain the control.

(e) Are the state trajectories x(t) obtained in (d) bounded (you must prove your
conclusion)? A solution x(t) obtained in (d) means a solution to (1) when
u(t) = Kx is used and cx(0) = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(4p)

Answer: No, since the trajectories contain et.

(f) For what α can we find a two dimensional minimal realization of the r(s)
such that for the minimal realization there exists u(t) = Kx that makes both
cx(t) = 0,∀t ≥ 0 if cx(0) = 0 and limt→∞ x(t) = 0. . . . . . . . . . . . . . . . . . . . . . . (3p)

Answer: α = −3, since in this case the unstable zero s = 1 will be cancelled.

3. (20p) Consider the transfer matrix

R(s) =

 γ
s+1

1
s+1

γ+1
s+1

1
(s+1)(s+2)

1
(s+1)(s+2)

2
(s+1)(s+2)

 ,
where γ is a real constant.

(a) Find the standard reachable realization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (6p)

Answer: Omitted.

(b) Compute the McMillan degree of R(s). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (6p)

Answer: δ(R) = 3 if γ 6= 1; otherwise δ(R) = 2.
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(c) For the case γ = 1, find a minimal realization of R(s) and verify your answer
by computing C(sI −A)−1B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (8p)

Answer: Since in R(s) the first column= the second column, and the third is
twice the first, the problem can be reduced to finding the minimal realization
for [

1
s+1
1

(s+1)(s+2)

]
,

for which the standard controllable realization would do.

4. (20p) Consider the optimal control problem

min
u
J =

∫ ∞
0

(y2 +
1

ε
u2)dt

s.t.

ẋ = Ax+Bu

y = Cx

x(0) = x0,

where, ε > 0, and

A =

[
a1 1
0 a2

]
, B =

[
0
1

]
, C =

[
0 1

]
.

(a) Show that the associated algebraic Riccati equation (ARE) has no positive
definite solution if a1 ≤ 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (4p)

Answer: Let P =

[
p1 p2
p2 p3

]
, then we have a1p1 − εp22 = 0, (a1 + a2)p2 + p1 −

εp2p3 = 0. Clearly p1 = 0 if a1 ≤ 0.

(b) Let P (ε) denote the symmetric solution to the ARE. Show that limε→0 εP (ε) is
positive definite if and only if a1 > 0 and a2 > 0. . . . . . . . . . . . . . . . . . . . . . . . . . (6p)

Answer: Let P̄ = εP , then AT P̄ + P̄A − P̄BBT P̄ + εQ = 0. As ε → 0, we
have AT P̄ + P̄A− P̄BBT P̄ = 0. Assume first that P̄ > 0, then we would have
P̄−1(−AT ) + (−A)P̄−1 = −BBT . Since (A,B) is controllable, this Lyapunov
equation has a positive definite solution iff −A is a stable matrix. The rest
follows.

(c) Show when limε→0 εP (ε) > 0, limε→0(A−εBBTP (ε)) has eigenvalues {−a1,−a2}.
(5p)

Answer: From the Riccati equation we have P̄ (A−BBT P̄ ) +AT P̄ = 0, thus
A−BBT P̄ = −P̄−1AT P̄ .

(d) When limε→0 εP (ε) > 0, show for any σ > 0, there exists ε0 > 0, such that for
all ε < ε0, A− σBBTP (ε) is a stable matrix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5p)

Answer: By manipulating the ARE, we have (A − σBBTP )TP + P (A −
σBBTP ) = −Q − (2σ − ε)PBBTP . Since limε→0 εP (ε) > 0, ∃ ε0 < σ, such
that P (ε) > 0, ∀ε ≤ ε0. Then by using similar technique used in (b) we draw
the conclusion.
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5. (15p)

(a) Consider a controllable system

ẋ = Ax+Bu.

Show that for any t1 > 0, u = −BTW−1(t1)x asymptotically stabilizes the
system (namely A−BBTW−1(t1) is a stable matrix), where

W (t1) =

∫ t1

0
e−AtBBT e−A

T tdt.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (8p)

Answer: We have (A−BBTW−1)W +W (A−BBTW−1)T = AW +WAT −
2BBT . Let L(t) = e−AtBBT e−A

T t, then L̇ = −Ae−AtBBT e−A
T t−e−AtBBT e−A

T tAT .

By integrating both sides, we have e−At1BBT e−A
T t1−BBT = −(AW +WAT ).

Then (A − BBTW−1)W + W (A − BBTW−1)T = −BBT − e−At1BBT e−A
T t1

and the conclusion follows.

(b) Consider the discrete-time matrix Riccati equation associated with Kalman
filters

P (t+ 1) = AP (t)AT −AP (t)CT [CP (t)CT +DRDT ]−1CP (t)AT +BQBT

P (0) = P0.

Assume that A = a, C = 1, D = 1, R = r > 0, Q = 0 and P0 = p0 > 0, where
|a| 6= 1.

(1) Show that limt→∞ P (t) exists. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (4p)
Answer: Since P−1(t+ 1) = 1

a2
P−1(t) + 1

a2r
, we have P−1(t) converge to

an equilibrium if a2 > 1 and diverge to infinity if a2 < 1. In the second case
we have P (t) → 0 and in the first case P−1 = 1

a2
P−1 + 1

a2r
, which gives

limt→∞ P (t) = (a2 − 1)r.

(2) Denote P = limt→∞ P (t), show that |a − ak| < 1, where k = P (P + r)−1

is the Kalman gain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3p)
Answer: if |a| < 1, we have k = 0 then a − ak = a; if |a| > 1, we have

k = a2−1
a2

, then a− ak = 1
a .


