
CHAPTER 5

Noninteracting control and tracking

In the previous chapter, we discussed the concepts of transmission zeros,
relative degree, and zero dynamics from a geometric point of view. In this
chapter we will study some more control problems in which these concepts
play an important role in finding the solutions.

5.1. Noninteracting control

In this section we study the problem of noninteracting control. Early study
of this problem can be found in [13], [14], [16].

Consider a square system

(5.1)
ẋ = Ax+Bu
y = Cx,

where

B =
[
b1 · · · bm

]
, C =

⎡
⎢⎣ c1...
cm

⎤
⎥⎦ .

Problem 5.1 (Static noninteracting control). Find u = Fx+Gv, such
that the closed-loop system

(5.2) ẋ = (A+BF )x+BGv
y = Cx,

has some relative degree (r1, . . . , rm), and each output yi = cix, i = 1, . . . ,m,
is only influenced by the input vi and no other input.

Remark 5.1. Note that G must be invertible. The property that the
output yi is not affected by the input vj , if j �= i, can be characterized as

ci(A+BF )k(BG)j = 0, ∀k ≥ 0 where i �= j.

The property that the closed-loop system has some relative degree eliminates
trivial solutions, namely solutions in which some output is not affected by
any input at all.

This is the restricted problem of noninteracting control; restricted in the
sense that only static state feedback is allowed.

Theorem 5.1. The static noninteracting control problem has a solution
if and only if the MIMO system (5.1) has some relative degree (r1, . . . , rm).
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42 5. NONINTERACTING CONTROL AND TRACKING

Proof

Sufficiency: here we give a constructive proof. Since the system has relative
degree (r1, . . . , rm), as discussed in the previous chapter, we can convert it
into the normal form:

(5.3)

ż = Nz + Pξ

ξ̇i
1 = ξi

2
...

ξ̇i
ri−1 = ξi

ri

ξ̇i
ri

= Riz + Siξ + ciA
ri−1Bu

yi = ξi
1, i = 1, . . . ,m.

Then the control:

u = Fx+Gv = L−1(−Rz − Sξ + v)

where L is given in (4.7) and R and S are defined in (4.9), solves the non-
interacting control problem.

The necessity can be shown as follows. If the noninteracting control
problem is solved, then there exists (r̄1, . . . , r̄m) such that

ci(A+BF )k(BG)j = 0, ∀k ≥ 0 where i �= j,

and for i = 1, . . . ,m,

ci(A+BF )k(BG)i = 0, k = 0, . . . , r̄i − 2,
ci(A+BF )r̄i−1(BG)i �= 0.

One can easily derive from the above conditions that for i = 1, . . . ,m

ciA
kbj = 0, ∀k = 0, 1, . . . , r̄i − 2, j = 1, . . . ,m

and
ciA

r̄i−1(BG)j = 0, ∀j �= i, ciA
r̄i−1(BG)i �= 0.

Namely,

LG :=

⎛
⎜⎝ c1A

r̄1−1B
...

cmA
r̄m−1B

⎞
⎟⎠G

is nonsingular. Thus it is necessary that L is nonsingular. Therefore the
system has relative degree (r̄1, . . . , r̄m).

Example 5.1 (Robust car steering). Let us revisit Example 1.2 in the
introduction:

α̇f = a11αf + r + δ̇f

ψ̇ = r

ṙ = a21αf + a22r + b21δf + d(t)
y1 = αf

y2 = ψ
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If we treat δ̇f and δf as two controls, it is easy to see that the noninteracting
control is solvable since the system would have relative degree (1, 2).

In particular, the following robust steering law

δ̇c = rref − r = i(v)δs − r

where δf = δc + δs and δs denotes driver input, has been introduced in
the literature. i(v) can be considered as the driving habit of an intelligent
driver in terms of controlling the yaw motion. This controller has been tested
successfully in a modified luxury sedan for compensating unexpected yaw
motions, but was not introduced commercially for various reasons.

So far we have shown that systems having a relative degree can be ren-
dered noninteractive via state feedbacks. We should point out that it is
possible, under some assumptions, to expand a system without a relative
degree, into one with. Naturally, this has to be done by a dynamic state
feedback. Here we will use only an example to illustrate the idea.

Example 5.2 (Noninteracting control by dynamic feedback). Consider

ẋ1 = u1

ẋ2 = x4 + u1

ẋ3 = −x3 + x4

ẋ4 = u2

y1 = x1

y2 = x2

It is easy to calculate that

L =
(

1 0
1 0

)
.

Therefore the system does not have any relative degree, and thus noninter-
acting control by static feedback is not possible. The reason why the system
has no relative degree is that the lowest derivatives of y1 and y2 that are
affected directly by the input are affected both by u1 and none by u2. There-
fore we can insert an “integrator” before u1 so the effect of the first control
channel on the output can be “delayed”:

ξ̇ = v1

u1 = ξ

Now we consider ξ as a new state and v1 as a control. For consistency of
notation we let

v2 = u2.

Then for the augmented system with v1 and v2 as control, we have

L =
(

1 0
1 1

)
.

Thus noninteracting control is possible.
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5.2. Tracking with stability

Consider again system (5.1):

(5.4) ẋ = Ax+Bu
y = Cx.

As usual, we suppose the system is controllable and observable. The problem
we study in the section is that what kind of reference signals yd ∈ Rm can
be tracked by the system while some stability is guaranteed.

Definition 5.1. A bounded reference signal yd(t) can be tracked asymp-
totically with stability, if there exists a control u(t) = Fx(t)+D(t) such that
y(t) − yd(t) tends to zero as t → ∞ and x(t) stay bounded.

Theorem 5.2. Suppose system (5.4) has relative degree (r1, . . . , rm) and
asymptotically stable zero dynamics. Then all reference signals yd(t), such
that for each i = 1, . . . ,m, yi(j)

d j = 0, . . . , ri − 1 are bounded, can be asymp-
totically tracked with stability.

Proof

Define tracking errors eij := ciA
j−1x − y

i(j−1)
d , for i = 1, . . . ,m and j =

1, . . . , ri. Then we can rewrite the system as

(5.5)

ż = Nz + Pe+ PYd

ėi1 = ei2
...

ėiri−1 = eiri

ėiri
= Riz + Sie+ SiYd + y

i(ri)
d + ciA

ri−1Bu
yi = ξi

1, i = 1, . . . ,m.

R and S are defined in (4.9),

e = (e11, . . . , e
m
1 , . . . , e

m
rm

)T Yd = (y1
d, . . . , y

m
d , . . . , y

m(rm−1)
d )T .

As we discussed before, since L is nonsingular, we can find a feedback trans-
formation to convert the last differential equation in (5.5) into

ėiri
= v, i = 1, . . . ,m.

Then it is easy to see that we can design a v to stabilize the error equations.
Since the zero dynamics is stable and Yd is bounded, the result is proven.

Remark 5.2. In this setting, we need to include yj(i)
d i = 0, . . . , rj − 1

in the controller. In Chapter 7 we will take a different approach, where we
assume that we know the model that generates the reference (or disturbance)
signals, thus less measurements will be needed for the controller.




